INTRODUCTION

Catalyst can effectively reduce the energy cost and the formation of by-product while increase yield of target product. It is involved in ~90% of commercially produced chemical products.

- 2. Gold nanoparticles (especially deposited onto metal oxide supports, such as TiO_2) as a highly active catalyst have been extensively studied; are active to numerous chemical reactions such as CO oxidation, propylene epoxidation and the water-gas shift, etc. CO oxidation is commonly used as a probe to scale their activity. 3. The structures of gold clusters vary with their size.: planar \rightarrow flat-cages \rightarrow hollow
- cages \rightarrow pyramidal structures.

- 4. To improve catalytic properties, first we need to understand the origins of high catalytic activity of Au/oxide catalysts. Systematic studies of catalytic activity of sub-nanometer Au clusters, such as $Au_{1-4, 7}$ and Au_{16-20} can address some critical questions:
- \clubsuit Reaction mechanism: how does the reaction proceed on Au/TiO₂?
- Effects of support: What role does the TiO_2 support play during CO oxidation?
- Size and shape dependence: what kind of clusters is more active, e.g. smaller or larger clusters? hollow-cage or pyramidal clusters?

COMPUTATIONAL DETAILS

Simulation of CO Oxidation:

For geometric optimization and searching the transition state, Dmol3 package is used. Details: GGA in PBE form. The real-space global cutoff radius is set to be 4.0 angstrom. Double numerical basis with d-polarization (DND) and semi-core pseudo potential are used to treat atomic orbitals and core electrons, respectively. The transition state search scheme is based on a combination of LST/QST methods. To avoid the interaction of neighbor clusters in periodic boundary condition, two large supercells (6×3 and 5×3) are used for the simulations of CO oxidation on the supported pyramidal Au clusters and cage-like Au clusters, respectively.

Born-Oppenheimer molecular dynamics is used to simulate the soft-landing process of Au clusters onto $TiO_2(110)$ surface and CO oxidation at the Au-TiO₂ interface

Reaction Kinetics:

CO Oxidation on TiO₂(110) Supported Subnanometer **Gold Clusters: Size and Shape Effects**

<u>1. Hollow-cage, pyramidal Au18-20 on substrates</u>

(1) Pyramidal Structure ($Au_{20\pm 1}$): experimentally imaged on the amorphous carbon substrate

Nanoscale **2012**, *4*, 4947-4949

(2) Hollow-cage Au_{18} : sustain from collision with $TiO_2(110)$ surface at initial speed 200 m/s.

> Upon deposited onto substrates, Au clusters can exhibit hollow-cage and pyramidal structures. So it is reasonable to use them as models to study catalytic properties of Au/TiO₂ systems

2. DPS mechanism on Au₁₆₋₂₀ on TiO₂

(1) OCOO* intermediate formation on Au_{18-cage}/TiO₂: MD simulation at 125K

Langmuir-Hinshelwood (L-H) Mechanism at dual perimeter sites (simplified as DPS mechanism)

(2) Reaction-pathway study

	Au _n	E_{a}^{TS1}	E_{a}^{TS2}	$E_{\rm ad}^{CO}$	$E_{\rm ad}^{CO^{*}}$	$E_{\rm ad}^{O_2}$	0 ₂ /CO	$\theta^{*}_{\mathcal{O}_{2}}$	<i>R</i> ₁
Cage	Au ₁₆	0.62	0.31	-0.56	-0.42	-0.69	1.64	9.889×10^{-1}	2.096
	Au ₁₇	0.05	0.24	-0.45	-0.44	-0.14	0.32	4.659×10^{-5}	2.725
	Au _{18-cage}	0.10	0.26	-0.41	-0.40	-0.30	0.75	1.629 × 10 ⁻²	2.248
Pyramid	Au _{18-pyrd}	0.10	0.29	-0.74	-0.43	-0.07	0.16	3.275×10^{-6}	4.141
	Au ₁₉	0.12	0.28	-0.75	-0.42	-0.06	0.14	3.275×10^{-6}	1.289
	Au ₂₀	0.13	0.28	-0.67	-0.44	-0.02	0.05	4.710×10^{-7}	1.864
		XX			AN	+0		4	
	A	X	() +C	¥ √	X				

 \succ Comparable reaction barriers (0.24 - 0.29 eV)

 \blacktriangleright Distinctive O₂/CO ratio due to different O₂ adsorption strength

Size effect: catalytic activities of Aun/TiO₂ systems increase with the size n up to 18. However, further increasing of the size reduces the activities for CO oxidation. Shape effect: supported hollow-cage Au_{18} exhibits significantly high catalytic activity due to the enhanced O_2 adsorption by $d-\pi$ interaction. However, the pyramidal isomer entails much lower reaction rates. Pyramidal gold clusters (on TiO_2 support) are expected to be less active. For flexible Au_{16} : the strong binding of O_2 with the low-coordinated Au atom inhibits its activity, but it can promote 3. CO to react with lattice oxygen atoms to generate oxygen vacancy. For robust Au₁₈: Langmuir-Hinshelwood mechanism is favorable due to the formation of OCOO* intermediates

Acknowledgement

Lei Li,† Yi Gao, Hui Li,† Yu Zhao,† Yong Pei, Zhongfang Chen, [⊥] Xiao Cheng Zeng†

[⊥] Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931 †Department of Chemistry, University of Nebraska-Lincoln, NE 68588

SUMMARY OF MAIN FINDINGS

- Li, L.; Gao, Y.; Li, H.; Zhao, Y.; Pei, Y.; Chen, Z.; Zeng, X. C. CO Oxidation on TiO2(110) Supported Subnanometer Gold Clusters: Size and Shape Effects. J. Am. Chem. Soc., 2013, 135, 19336-19346.
- Green, I. X.; Tang, W.; Neurock, M.; T. Y. Jr. Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO₂ Catalyst. *Science* **2011**, *333*, 736
- Gao, Y.; Shao, N.; Pei, Y.; Chen, Z. F.; Zeng, X. C. Catalytic Activities of Subnanometer Gold Clusters (Au₁₆-Au₁₈, Au₂₀, and Au₂₇-Au₃₅) for CO Oxidation. ACS Nano. 2011, 5, 7818-7829

