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ABSRACT 32 

 33 

Microalgae are proposed as feedstock organisms useful for producing biofuels and co-34 

products.  However, several limitations must be overcome before algae-based production 35 

is economically feasible.  Among these is the ability to induce lipid accumulation and 36 

storage without affecting biomass yield.  To overcome this barrier, a chemical genetics 37 

approach was employed in which 43,783 compounds were screened against 38 

Chlamydomonas reinhardtii and 243 compounds were identified that increase 39 

triacylglyceride (TAG) accumulation without terminating growth.  Identified compounds 40 

were classified by structural similarity and 15 were selected for secondary analyses 41 

addressing impacts on growth fitness, photosynthetic pigments, and total cellular protein 42 

and starch concentrations. TAG accumulation was verified using GC-MS quantification 43 

of total fatty acids and targeted TAG and galactolipid (GL) measurements using LC-44 

MRM/MS. These results demonstrated TAG accumulation does not necessarily proceed 45 

at the expense of GL.  Untargeted metabolite profiling provided important insights into 46 

pathway shifts due to 5 different compound treatments and verified the anabolic state of 47 

the cells with regard to the oxidative pentose phosphate pathway, Calvin cycle, 48 

tricarboxylic acid cycle and amino acid biosynthetic pathways. Metabolite patterns were 49 

distinct from nitrogen starvation and other abiotic stresses commonly used to induce oil 50 

accumulation in algae. The efficacy of these compounds was also demonstrated in 3 other 51 

algal species.  These lipid inducing compounds offer a valuable set of tools for delving 52 

into the biochemical mechanisms of lipid accumulation in algae and a direct means to 53 

improve algal oil content independent of the severe growth limitations associated with 54 

nutrient deprivation. 55 

 56 

 57 
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INTRODUCTION 61 

 62 

Currently economic barriers must be overcome for the commercial adoption of 63 

microalgae for next generation biofuel production despite their distinct advantages. These 64 

include rapid growth and the ability to accumulate 20-40% of dry weight as lipids, a potential for 65 

100-fold more oil per acre than soybeans or other oil-seed bearing plants, and an ability to thrive 66 

in poor quality water in a large variety of environmental conditions (Jones and Mayfield, 2012; 67 

Scranton et al., 2015). Algae also fix CO2 into biomass during photosynthesis, thus addressing 68 

concerns about the generation of carbon emissions. Additionally, a wide range of byproducts 69 

useful for biotechnological applications are produced in algae, notably replacing an increasing 70 

amount of the docosahexaenoic acid (DHA, C22:6 ω3) market as the supply of fish oil dwindles 71 

(Morita et al., 2006; Song et al., 2015).  72 

Lipid accumulation in algae normally requires an environmental stress, particularly 73 

nutrient deprivation of nitrogen, sulfur or certain metals, as algae do not appreciably synthesize 74 

oil during rapid growth (Guarnieri et al., 2011; Cakmak et al., 2012). Nutrient limitation is 75 

sometimes achieved during normal growth when cultures reach saturation density when nitrogen 76 

becomes limiting  and triacylglyceride (TAG) rich lipid droplets become visible and measurable 77 

(Msanne et al., 2012; Wang et al., 2012).  This is normally preceded by, or commensurate with, 78 

cessation of protein synthesis, degradation of chlorophylls and photosynthetic enzymes including 79 

RuBisCO, and a dramatic reduction in chloroplast membrane lipids (Wase et al., 2014; Allen et 80 

al., 2015). Therefore, the commercial production of algae for fuel and coproducts is limited by 81 

the antagonism between reproductive growth and oil accumulation. Solving this problem 82 

requires further insight into activating metabolic pathways leading to lipid storage while 83 

avoiding the obstruction of cell growth or division. 84 

Important information on lipid synthetic pathways has been derived by comparison of 85 

algal and plant genomes (Awai et al., 2006; Benning, 2008). Such comparisons have led to the 86 

conclusion that fatty acid synthesis in algae occurs primarily, if not exclusively, in the 87 

chloroplast (reviewed in (Hu et al., 2008)). Fatty acid synthesis uses metabolic substrates derived 88 

from photosynthetic CO2 fixation, which supplies chloroplast-specific complex lipid synthesis. 89 

De novo synthesized fatty acids must also be trafficked outside the chloroplast to support extra-90 

plastid lipid synthesis (Awai et al., 2006). Involved in this process is an interwoven, intracellular 91 
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system of acyl chain incorporation into glycerolipids including the Kennedy Pathway, acyl chain 92 

editing and lipid remodeling reactions. During N starvation, this system is coopted for TAG 93 

synthesis, which competes with membrane lipid synthesis for available acyl-CoA. In algae, 94 

abiotic stress-induced TAG synthesis mainly occurs through the sequential acylation of glycerol 95 

using fatty acids derived from both de novo synthesis and membrane glycerolipids, which are 96 

continually synthesized and degraded (Allen et al., 2015). The side chain composition of newly 97 

synthesized TAG, however, differs significantly from membrane lipid fatty acid composition in 98 

having higher levels of saturated and monounsaturated long chain fatty acids, supporting a 99 

greater role for de novo synthesized acyl chain incorporation (reviewed in (Hu et al., 2008)). 100 

Additionally, 
13

C-CO2 labeling provides evidence that a large majority of the TAG side chains 101 

are derived directly from photosynthetic CO2 fixation and de novo fatty acid synthesis (Allen et 102 

al., 2015; Allen et al., 2017). These recent advancements indicate that, although membrane 103 

glycerolipid synthesis, degradation, and acyl editing are intricately involved in TAG 104 

accumulation as a consequence of the stress-induced cessation of growth, it may be possible to 105 

extricate TAG synthesis from these reactions. 106 

In previous studies, we used a combinatorial proteomics and metabolomics approach to 107 

help define metabolic and regulatory mechanisms responsible for TAG synthesis, especially 108 

related to the central metabolism during nitrogen starvation (Wase et al., 2014). These studies 109 

indicated that the TCA cycle acts as a central hub for maintaining equilibrium in the supply and 110 

demand of carbon skeletons, channeling excess carbon precursors as citrate into lipid synthesis 111 

(Wase et al., 2014). Under these conditions growth is halted, biosynthetic activities are 112 

minimized, and excess carbon is channeled to lipids.  Thus, the yield of biomass is compromised, 113 

which ultimately also limits lipid production and thus minimizes feasibility for use in biofuels.   114 

Here we report a chemical genetics study using small molecule activators of lipid 115 

synthesis that were identified by high throughput screening.  Several of these lipid activators 116 

were employed to probe pathways permissive to both algal growth and TAG accumulation 117 

(McCourt and Desveaux, 2010; Wase et al., 2015). For screening, low density algal cultures 118 

were treated with compounds from a large chemical library for 72 h, and both growth and lipid 119 

accumulation were assessed (Wase et al., 2015). A collection of 243 active compounds were 120 

identified and verified that fell into 5 structurally-related groups. Novel secondary screens were 121 

conducted with 15 of these compounds to examine impacts on growth and chloroplast integrity, 122 
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as well as total lipid, protein, and starch contents. All but one compound accumulated TAG 123 

without producing an apparent stress response. To further these analyses, metabolite profiles 124 

resulting from treatment with a subset of 5 compounds inducing distinct phenotypic responses in 125 

Chlamydomonas reinhardtii were conducted. These data provide valuable insight into changes in 126 

central carbon and amino acid metabolism associated with lipid accumulation in algae. To 127 

confirm that TAG accumulation is not limited to C. reinhardtii, we also tested the selected 128 

compounds in three different freshwater chlorophycean algae: Chlorella sorokiniana, Chlorella 129 

vulgaris and Tetrachlorella alterens. Lipid-inducing compounds discovered by chemical genetic 130 

screening represent useful tools for identifying metabolic reactions and regulatory factors that 131 

can affect both lipid and biomass accumulation, and thus are of use in the commercial production 132 

of algal biofuels and other high value co-products.  133 

 134 

  135 

RESULTS 136 

 137 

Selection of lipid storage activators 138 

 139 

The screening protocol used was previously devised and tested using a small compound 140 

library designed for this purpose (Wase et al., 2015) and is outlined in Supplemental Fig. S1.  141 

The primary selection required two phenotypic tests; [1] the lipophilic dye Nile Red was used to 142 

identify treated cells that accumulated neutral lipids, and [2] assessment of growth and 143 

accumulated cellular mass using spectrophotometric measurements at OD600.  Compounds were 144 

added to a final concentration of 10 µM at low cell density and cells were cultured for 72 h prior 145 

to analyses. In the current screening experiments, a control based normalization approach was 146 

employed where the data were standardized to a negative control in terms of lipid accumulation 147 

(i.e., cells cultured without compound in Tris-acetate-phosphate media (TAP) with vehicle 148 

(DMSO)).  For quality control analysis (QC), a Z-factor was calculated for each analysis plate to 149 

determine the separation between the positive control for lipid accumulation (cells grown in TAP 150 

media without nitrogen (N-)) and the negative control (cells grown in standard TAP media with 151 

nitrogen (N+)) to measure the signal range (Zhang et al., 1999).  The mean Z-factor was robust at 152 
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0.78 ± 0.08 over 124 plates that were used to screen 43,783 compounds (Fig.1A).  The QC 153 

analysis is given in supplemental data 1 (Supplemental Fig. S2-S4).  154 

Estimation of the change in biomass after 72h treatment compared with the initial 155 

inoculum revealed that 35 of the 43,783 compounds severely blunted growth (i.e., final OD600 ≤ 156 

0.2) (Fig. 1B).  Approximately 3% of the compounds (1,294) had a moderate inhibitory effect on 157 

growth whereby the cells achieved an average optical density ≤ 0.32.  Treatment with 26,656 158 

compounds resulted in an average of 0.45 OD600 after three days of treatment, which was 159 

comparable to the controls.  160 

Following the elimination of compounds that limited growth, a fold-change analysis of 161 

Nile Red intensity as an indicator of neutral lipid accumulation was completed (Fig. 1C).  The 162 

primary hit list included 367 compounds that induced lipid accumulation to ≥ 2.5-fold levels 163 

over untreated controls to yield a hit rate of 0.8%.  To confirm the primary screening results, 164 

these compounds were retested at over a range of concentrations from 0.25 to 30 μM (Fig. 1D 165 

and Supplemental Table S3).  Fluorescence microscopy was used to verify these compounds 166 

induced lipid body accumulation in cells (data not shown).  The final hits from the primary 167 

screen consisted of 243 compounds that gave 2.5-fold induction at one or more concentrations 168 

tested; 124 compounds that yielded less than 2.5-fold lipid induction were not considered for 169 

further analysis (Supplemental Fig. S2, and PubChem AID 1159536).  170 

 171 

Structural models for lipid-inducing compounds   172 

 173 

To gain insight into the structural relatedness of the hit compounds, we performed 174 

chemoinformatics analysis using cytoscape ChemViz plugin (Wallace et al., 2011). Structural 175 

similarity of the compounds were based on Estate bit fingerprint descriptors (Hall and Kier, 176 

1995).  To construct a network similarity graph, a Tanimoto similarity cutoff of 0.70 was used 177 

for edge creation (0 representing dissimilar compounds and 1.0 representing identical 178 

compounds) and visualized using Cytoscape v2.8.2 (Yeung et al., 2002).  Data from three 179 

treatment concentrations, 10, 15 and 30 μM were mapped and a pie chart was painted at each 180 

node.  The fold change value for data acquired at the 30 μM concentration was used to adjust the 181 

node size (Fig. 2).  182 
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 The analysis using the Cytoscape ChemViz plugin provided a structure-activity 183 

relationship in the form of a network similarity graph based on the structural similarities of the 184 

compounds and their ability to induce lipid synthesis. For further analysis of the compounds to 185 

identify structurally similar molecular framework /scaffolds Scaffold hunter was used (Wetzel et 186 

al., 2009). The structures of the 243 active molecules were imported into Scaffold hunter v2.3.0 187 

and a new database was created. Using chemical fingerprinting analysis of the 243 active small 188 

molecules, we constructed a model to predict the active structural class of the lipid accumulating 189 

compounds. The chemical space was organized by abstracting the molecular structures so that a 190 

set of structurally similar molecules can be represented by a single structure referred to as the 191 

molecular framework, or scaffold, that is obtained from a molecule by removing side chains, 192 

generating a hierarchy of scaffolds sharing a common molecular framework.  For structural 193 

comparison of the active molecules, first Estate Bit chemical fingerprints were calculated and 194 

hierarchical clustering was performed by the Ward’s linkage method. The distance was 195 

calculated using the Tanimoto coefficient of 0.70 noted above (Hall and Kier, 1995).  Based on 196 

the hierarchical clustering, we identified several major and minor structural classes of 197 

compounds that illustrate related structure and activity. Using at least 3 compounds per cluster, 198 

we identified 18 different structural molecular frameworks (scaffolds) and 45 singletons (Fig. 2A 199 

and 2B). The major common structural features included benzene (45 members), piperazine (114 200 

members), morpholine (32 members), piperidine (28 members), adamantane (14 members), and 201 

cyclopentane (11 members). Further comparisons of the most active compounds in terms of lipid 202 

accumulation led to the selection of 15 that were divided into 5 related structural groups. 203 

Compounds in group 1 (GR-1) shared a piperidine moiety, group 2 (GR-2) a benzyl piperizine 204 

moiety, group 3 (GR-3) a nitrobenzene moiety, group 4 (GR-4) a phenylpiperizine moiety and 205 

group 5 (GR-5) an adamantane moiety (Fig. 3).  206 

To visually assess the effect of compounds on the lipid accumulating phenotype, cells 207 

were stained with Nile Red and images captured using both brightfield and fluorescent confocal 208 

microscopy (Fig. 3). As expected, all compounds induced the accumulation of lipid bodies. For 209 

some compound treatments, granular particles were also observed that may be starch deposits.  210 

 211 

Effect of selected compounds on growth, photosynthetic pigments, total starch and protein 212 

  213 
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The 15 highest performing compounds in terms of lipid accumulation and growth were 214 

further evaluated using secondary screens that assessed impact on growth and selected cellular 215 

metabolite pools. Cells in early-log phase (0.1-0.2 OD600) were treated with compounds at a 216 

single concentration of 30 μM. Incubation was continued for 72 h and the change in the optical 217 

density was monitored daily (Fig. 4A).  At 30 µM, some growth reduction was observed for most 218 

compounds after 48 h compared with controls. One compounds WD10784 had a more 219 

pronounced reduction of growth at 30 µM, so the concentration of this compounds was reduced 220 

to 10 µM for secondary analyses. This concentration was sufficient to induce the maximal lipid 221 

accumulation and was less growth restrictive. Importantly, unlike during N starvation, total 222 

protein levels were not significantly reduced by treatment with any of the selected lipid 223 

activating compounds (Fig. 4B).  Protein levels were slightly but significantly increased after 224 

treatment with WD10264, WD10872, WD10615, and WD20542.   225 

During N limitation, which induces the accumulation of lipids, the levels of starch also 226 

increases, indicating the storage of carbon as both sugars and fats (Longworth et al., 2012). 227 

These changes in the macromolecular pools are associated with the stress response induced by N 228 

limitation and the redirection of carbon to storage compounds including lipids and starch (Wase 229 

et al., 2014). Treatment with the selected lipid inducing compounds had a variable impact on 230 

accumulation of starch; 8 compounds had no significant impact on starch accumulation while 7 231 

compounds significantly increased starch levels compared to the untreated control cells (Fig. 232 

5A). The compounds that did not alter starch levels were primarily from structural groups 1 and 233 

3.   The most common structural feature of the compounds that induced starch levels was the 234 

piperazine moiety, thus suggesting that this structural feature is important in inducing this effect.    235 

To utilize carbon efficiently and satisfy energy demands, algae must maintain adequate 236 

chlorophyll and carotenoids levels. We have previously shown that during nitrogen starvation, 237 

there is a gradual decrease in the chlorophyll:carotenoid ratio (Wase et al., 2014). Quantification 238 

of photosynthetic and total carotenoid pigments showed treatment with most compounds had no 239 

significant effect (Fig. 5B-5D).  However, treatment for 72h with compounds WD10784 and 240 

WD10615 reduced total carotenoids, chlorophyll a (chl a) and chlorophyll b (chl b) by ≥50 %, 241 

relative to control levels (Fig. 5B-5D).  There was also a small but significant decrease in both 242 

carotenoid and chl b quantities after treatment with WD10738, WD10599, and WD20542, while 243 

chl a was unaffected.  244 
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 245 

Fatty acid analysis of compound treated cells  246 

 247 

Following compound treatment of Chlamydomonas, lipids were extracted and the fatty 248 

acid composition determined using GC-MS (Table 1). The total amount of fatty acids 249 

accumulated varied with compound treatment from 1.3-fold (WD40157) to 4.4-fold (WD30030) 250 

control cells.  For all compound treatments, there were significantly higher levels of C16:0, 251 

C18:0, C18:2
cis∆9,12 

and C18:3
cis∆9,12,15

 compared with untreated control cells (given as µg/5x10
6 252 

cells). For example, compound WD40844 (Table 1, line 3) resulted in the accumulation of 3.7-253 

fold more C16:0 as compared to untreated control cells; C16:0 was increased 3.8-fold with 254 

WD30030 treatment, 3.0-fold with WD20067, 3.2-fold with WD10461, 2.4-fold with WD20542, 255 

3.7-fold with WD40844, and 2.6-fold with WD10784.  The fatty acid profiles for compound 256 

treated cells differed somewhat from those measured after nitrogen starvation (Msanne et al., 257 

2012; Wase et al., 2014).  For example, during nitrogen starvation, the levels of the 258 

polyunsaturated fatty acid C16:4 increase, whereas for most of the lipid accumulating 259 

compounds the levels of this fatty acid were not significantly different from the controls.  The 260 

opposite was true for C18:3.   261 

 262 

Complex lipid analysis after selected compound treatments 263 

 264 

In order to gain further insight into the biochemical shifts that result during treatment of 265 

Chlamydomonas with compounds from the different structural classes that promoted lipid 266 

accumulation, we performed metabolite analyses of cultures treated with WD10784 from GR-1 267 

(piperidine moiety), WD10461 from GR-2 (benzyl piperizine moiety), WD30030 from GR-3 268 

(nitrobenzene moiety), and WD20067 and WD20542 from GR-5 (adamantane moiety).  A 269 

common component of the algal abiotic stress response is the reduction of chlorophyll content 270 

and concurrent degradation of chloroplast membrane lipids, specifically mono-271 

galactosyldiacylglycerol (MGDG) which can collapse these membranes into irreversible, non-272 

biological states as chloroplasts are dimensionally reduced (Guschina and Harwood, 2009; 273 

Goncalves et al., 2013; Urzica et al., 2013). The galactolipid (GL) content of cells was therefore 274 

analyzed in relation to TAG levels to assess both the quantitative extent of TAG accumulation 275 
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and possible abiotic stress due to the compound treatments (Fig. 6A-6C). In all cases, the 276 

compounds increased the TAG content ranging from 2.7 ± 0.6- to 5.5 ± 3.0-fold greater than 277 

algae grown without compounds but with vehicle (DMSO) (Fig. 6A). The total GL content of 278 

cells treated with WD30030, WD20542, WD10784, and WD10461, was not statistically 279 

significant by one-way analysis of variance (p > 0.05) (Fig 6B). By contrast, treatment with 280 

WD20067 reduced total GL by 0.3 ± 0.04 fold. Therefore, with the exception of WD20067, the 281 

compounds tested increased TAG content without causing the chloroplast membrane lipid 282 

degradation typical of abiotic stress. 283 

 284 

Changes in polar metabolite levels in response to compound treatment 285 

 286 

Untargeted metabolomics was employed using GC-MS to broadly assess impacts of the 5 287 

selected compounds on cellular polar metabolites. Identified metabolites were reported if present 288 

in at least 7 of 9 samples per treatment group, resulting in a list of 125 compounds. These were 289 

deconvoluted and aligned using the eRah R-package. Putative identification of the compounds 290 

was made using both the MassBank and Golm metabolome databases, which resulted in 98 291 

unique metabolite identifications. The metabolite IDs were mapped with the KEGG compound 292 

IDs and classified according to KEGG compound biological role classifications (Table 2). 293 

Metabolites annotated but not assigned a role in the KEGG databases were denoted as 294 

unclassified and unannotated metabolites were classified as unknown.   295 

For the first quantitative evaluation, normalized and pareto scaled ion intensities for the 296 

125 metabolites and 54 samples (9 replicates for each condition) were analyzed using 297 

unsupervised multivariate statistics (principal component analysis, PCA) to globally compare 298 

biochemical traits between the control and compound treated groups. The resultant score 299 

scatterplot showed that the principal factors PC1 and PC2 discriminated between the metabolite 300 

profiles in accordance with the compound treatment (Fig 7A). PC 1 had an explained variance of 301 

22.2% and mainly discriminated the metabolite profiles of the untreated control from compound 302 

treated samples. With the combination of PC2 (explained variance 20.6%), all the treated groups 303 

were clustered away from the untreated control and 42.8% of the cumulative variance was 304 

explained among the 6 different treatments.  A clear separation between the control and 305 

compound treated samples was observed, however, data for compounds WD30030, WD10461 306 
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and WD20542 were not well differentiated from each other, indicating an overlapping impact on 307 

the Chlamydomonas metabolome, while compounds WD10784 and WD20067 were well 308 

separated from the other 3 compounds and from each other.  The corresponding PCA loading 309 

plots of the metabolite data are given in Supplemental Fig. S6A.  The normalized and pareto 310 

scaled data was subjected to univariate analysis and fold change was calculated.  Metabolites that 311 

have p value < 0.05 in at least one treatment/control ratio comparison were highlighted in red in 312 

the loading plot.   313 

The pareto scaled data was further subjected to Partial Least Square Discriminate 314 

Analysis (PLS-DA) analysis to investigate deep differences between the treatment groups and 315 

untreated control cells to find potential biomarkers for discriminating the effect on metabolism 316 

due to specific treatments (Fig 7B). The score plot showed good fit to model as the untreated 317 

control group was well separated from the treated samples. The model demonstrated good 318 

predictive ability with a R
2
Y(cum) of 0.956 and Q2(cum) of 0.865. The S-plot (Supplemental 319 

Fig. S6B) and the variable importance for projection (VIP) plot of the OPLS-DA model (Fig. 320 

7C) was used to select the variable responsible for the group separation.  Based on the VIP 321 

scores (deduced using www.metaboanalyst.ca web-tool and the S-plot generated from the OPLS-322 

DA model using muma R package), the top 20 metabolite biomarkers were illustrated to 323 

demonstrate biochemical signatures could be identified to show impact by the different 324 

compounds (Fig 7C).  Further, a heatmap, generally used for unsupervised clustering, was also 325 

constructed based on the top 50 metabolites identified via ANOVA as having a p < 0.05 (Fig 8). 326 

Concordance and differences between compound treatment effects on metabolites identified are 327 

illustrated in a Venn diagram (Fig. 8B). A complete list of the identified metabolites and 328 

comparison between treatments (Log2-fold change values) are given in Supplemental Table S4 329 

and the raw intensities are given in Supplemental Table S5.  Of the 125 identified, 33 metabolites 330 

were not significantly changed by any treatment condition, while 15 that were significantly 331 

different from control levels were common to all treatment groups.  The fewest number of 332 

significant changes in metabolite levels, 36/125, were measured for cells treated with WD20067.  333 

The KEGG brite hierarchy was used to classify the different metabolites (Fig. 8C) and suggested 334 

that 11% contain phosphates, 12% were amino acids and 6% were biogenic amines.  Fatty acids 335 

and carbohydrates contributed 7% of the total profiled metabolites.  The largest number (38%), 336 

however, remain as unidentified.  337 
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Metabolite analysis provided valuable information on similarities and differences in 338 

central carbon and amino acid metabolism for the 5 compounds assessed (Table 4, Fig. 9 and 339 

Fig. 10). Relative levels of key metabolites in glycolysis, gluconeogenesis, the TCA/glyoxylate 340 

cycles and photorespiration/carbon fixation were different between compound treated and 341 

control samples (Table 4).  Glucose levels were elevated when cells were treated with 342 

compounds WD30030 and WD20542 but were not significantly different from control values for 343 

other compounds.  Glucose-6-phosphate (G-6-P), a metabolite of glycolysis and a potential 344 

substrate for starch synthesis accumulated to varying levels with compound treatments.  In 345 

general, the levels of starch accumulating in response to compound treatment roughly reflected 346 

the concentration of G-6-P with compound WD10784 inducing both highest levels of this 347 

substrate and starch product (Table 4 and Fig. 5A).  In contrast, compound WD20067 induced 348 

the lowest accumulation of G-6-P and slightly elevated starch levels. Additional metabolites of 349 

glycolysis, gluconeogenesis and the Calvin cycle that were identified included 350 

phosphoenolpyruvate (PEP) and glycerol-3-phosphate (3-PG).  PEP levels were significantly 351 

lower in cells treated with any of the compounds compared with control. The same was true for 352 

3-PG with the exception of cells treated with WD20067, which was equivalent to controls.  In 353 

contrast, levels of the glycolytic intermediate fructose-6-phosphate (F-6-P) also derived from G-354 

6-P were elevated but to varying extents. Very high levels were achieved in cells treated with 355 

WD10784 (360-fold), modest increases were observed after treatment with WD 30030 and 356 

WD20542 (17- and 34-fold, respectively), while WD20067 increased this metabolite slightly 357 

(2.5-fold).  Fructose-1,6-bisphosphate (F-1,6-P), in contrast, was significantly reduced by 358 

treatment with each of the compounds perhaps due to efficient conversion to glyceraldehyde 3-359 

phosphate (G-3-P) and dihydroxyacetone phosphate (DHAP), which can feed into the Calvin 360 

cycle to regenerate Ru-1,5-P.   361 

 Four metabolites of the TCA cycle were identified and compared after compound 362 

treatment. Isocitrate concentrations were somewhat elevated by all compounds but differences 363 

were only statistically significant for WD30030, WD10641 and WD20542. Alpha-ketoglutarate 364 

levels were not significantly different for WD30030, WD10461 or WD20542 but were slightly 365 

elevated by WD10784 and WD20067. This TCA cycle intermediate is formed by the 366 

decarboxylation of isocitrate and results in the net loss of one carbon as CO2. Succinate can be 367 

formed by a second decarboxylation or when carbon loss is bypassed through the formation of 368 
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glyoxylate. While glyoxylate was not identified in these analyses, succinate was identified and 369 

its levels were significantly higher than controls under all compound treatments, perhaps 370 

reflecting the anabolic state of the cells treated with compound to allow net assimilation of 371 

carbon and storage of lipid and starch. Fumarate levels were also slightly higher after treatment 372 

with WD30030 and WD20542. While malate and oxaloacetate were not identified in these 373 

experiments it was noted that oxalic acid, an OAA metabolite was highly elevated in all 374 

treatments, possibly due to increases in the substrate OAA.  Citrate is a critical TCA cycle 375 

intermediate that is also a substrate for lipid synthesis when energy demands of the cells have 376 

been met, and was previously noted as elevated in nitrogen deprivation of Chlamydomonas 377 

(Wase et al., 2014). Citrate was not identified in our non-targeted analysis so it was measured 378 

directly (Supplemental Table S6B).  Two compounds, WD30030 and WD20067, increased 379 

citrate levels significantly by about 25% while the 3 other compounds had no significant effect.  380 

Erythrose-4-phosphate (Er-4-P) is a key intermediate shared by the pentose phosphate 381 

pathway and the Calvin cycle.  It also serves as a substrate in the biosynthesis of the aromatic 382 

amino acids tyrosine, phenylalanine, and tryptophan.  Er-4-P was significantly reduced by 383 

treatment with each compound except WD10784.  Ribulose-5-phosphate (Ru-5-P), ribulose-1,5-384 

bisphosphate (Ru-1,5-P) , and xylulose-5-phosphate (X-5-P), also metabolites of the Calvin 385 

Cycle, were significantly elevated by all compounds with the exception of WD10461.  The latter 386 

only elevated accumulation of X-5-P to a small, but significant extent and did not influence the 387 

other two metabolites. Taken together, these data indicate the Calvin Cycle remains active in 388 

compound treated cells compared with controls. This results in the net gain of carbon as lipid, 389 

and for some compounds starch as well. 390 

Twelve amino acids were identified in this metabolite assessment, as well as 12 391 

metabolites involved in amino acid synthesis or degradation (Table 4 and Fig. 10). There was, in 392 

general, an elevation of most amino acids identified and some substrates required for their 393 

synthesis. However, between compounds there were different patterns of impact on the levels of 394 

specific amino acids. It was notable that compound WD30030 increased the abundance of 9 of 395 

12 amino acids and 8 substrates or metabolites of amino acid synthesis or degradation. Alanine 396 

and valine, each derived from pyruvate, were elevated 20-fold or more when cells were treated 397 

with this compound.  In contrast treatment with compounds WD10784 or WD10461 had more 398 

limited impact on most of the amino acids evaluated.  399 
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Citrulline levels were very highly elevated compared with controls after each compound 400 

treatment and this led, correspondingly, to elevated arginine levels.  Chorismate, an intermediate 401 

in the synthesis of the aromatic amino acids, was elevated 30- to 40-fold by treatment with 402 

compounds WD30030, WD10461 and WD20542 but was only slightly elevated by WD10784 403 

and was not increased by WD20067 treatment.  Tyrosine levels followed a similar pattern, as 404 

expected.  Tryptophan and phenylalanine, however, were not identified in our data sets.  405 

Sarcosine an intermediate and degradation product involved in glycine metabolism was elevated 406 

by all compounds except WD20067.  Markedly reduced by most compound treatments were 407 

homocysteine, cysteic acid, and homoserine, each involved in threonine and methionine 408 

production. Aminoadipic acid, a catabolite of lysine, was highly elevated by WD10784 treatment 409 

and to a lesser extent by the other compounds. 410 

Metabolites involved in nucleotide metabolism were impacted to varying extents by the 411 

different compounds.  Adenine levels were not significantly different from controls for any 412 

compound, whereas guanine and uracil levels were significantly decreased.  Thymine levels were 413 

only significantly decreased in cells treated with WD30030; other compounds had no effect.  414 

Deoxyadenosine accumulated to 95-fold control levels in cells treated with WD20067, while the 415 

other compound treatments did not significantly alter levels of this compound.   416 

Additional metabolites identified and compared that are of interest included phytol, a 417 

metabolite of chlorophyll. As expected, since photosynthetic pigment levels were maintained, 418 

abundance of this compound was not significantly different between treatment and control 419 

samples. A compound implicated in plant and root growth, 5-hydroxy-tryptamine(Akula et al., 420 

2011), was significantly elevated by all compound treatments. Most notably, the levels of a 421 

flavonoid apigenin, suggested for use in treatment of some cancers, accumulated 2,000-fold after 422 

WD30030 treatment, 1,200-fold by WD10461 and WD20542 and to somewhat lesser extent by 423 

the other 2 compounds.  Thus, these lipid-activating compounds may also be of value in 424 

producing this important compound as a coproduct.   425 

 426 

Small molecule activators of lipid accumulation function in other algal species  427 

 428 

Previous work has demonstrated Nile red fluorescence is a useful measure of neutral lipid 429 

droplet accumulation (Greenspan et al., 1985; Chen et al., 2009). In the current work, NFC 430 
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values correlated well with measurements of fatty acid levels (Table 1), TAG and GL (Figure 6) 431 

quantification in Chlamydomonas for compounds WD10784, WD10461, WD30030, WD20542, 432 

and WD20067.  Therefore, estimations of NFC were used to evaluate whether or not the 433 

compounds were also effective in stimulating lipid body production in three additional fresh 434 

water algae, C. vulgaris UTEX395, C. sorokiniana UTEX1230, and T. alterns UTEX2453 that 435 

represent potential feedstock candidates for biofuel production (Mallick et al., 2012; Rosenberg 436 

et al., 2014). These green algae are fast growing, have short doubling times in heterotrophic 437 

media and can accumulate high levels of lipids during stress (e.g. up to 56% and 39% for UTEX 438 

1230 (Wan et al., 2012) and UTEX 395 (Rosenberg et al., 2014), respectively).  Growth of the 439 

cells with compound was comparable to Chamydomonas and as shown in Table 5 and 440 

Supplemental Table S2, the selected compounds increased lipid accumulation in these microalgal 441 

species as well.   442 

 443 

DISCUSSION 444 

 445 

Most platforms currently used to increase lipid accumulation for biofuel and bioproduct 446 

production in algae employ abiotic stress, which also limits biomass accumulation.  Using high 447 

throughput methods, we screened 43,783 compounds and selected 243 small molecule activators 448 

in Chlamydomonas reinhardtii that increased lipid body accumulation and maintained continued 449 

growth over 72 h thus fulfilling two important criteria in advancing algae for use in next 450 

generation biotechnology applications.  The compounds were classified according to structural 451 

similarities into 5 subgroups.  Biochemical characterization of 15 representatives verified the 452 

stimulation of lipid body accumulation and elevated total fatty acid abundance for each, and also 453 

established unique impacts on starch accumulation and plastidic components.  Further analyses 454 

using metabolomics approaches demonstrated 5 lipid activators from various structural families 455 

had separable impacts in terms of cellular metabolic processes.  In general, metabolite profiles 456 

were similar between WD10784 and WD10461 by comparison with WD30030 and WD20542, 457 

while WD20067 displayed a pattern distinct from the other 4 compounds. WD20067 is of 458 

particular interest since this compound induced very high TAG accumulation, only slightly 459 

increased starch levels, and had the least impact on polar metabolites.  460 
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Among non-polar metabolites, all compounds tested resulted in increased levels of TAGs.  461 

Importantly, for 4 compounds, galactolipids were essentially equivalent to wild-type indicating 462 

these membrane lipids were not a major source of acyl chains in the TAGs as occurs in many 463 

stress conditions (Hu et al., 2008; Urzica et al., 2013; Allen et al., 2017) or with treatment with 464 

the small compounds brefeldin A (Wase et al., 2015) or fenpropimorph (Kim et al., 2015).  In 465 

contrast, treatment with WD20067, decreased galactolipid content to about 25% of control 466 

values, which is more similar to nutrient deprivation (Goncalves et al., 2013; Urzica et al., 2013; 467 

Allen et al., 2017).  468 

In general, WD30030 maintained carbon flux through glycolysis, the TCA cycle, Calvin 469 

cycle and OPPP leading to increased levels of a number of amino acids and TAG with only a 470 

moderate increase in starch synthesis. By contrast, WD10784 increased storage of both TAG and 471 

starch, possibly due to very high levels of G-6-P compared to controls or other compounds 472 

tested. Of note were the reduced glucose levels when cells were treated with WD10784 or 473 

WD10461; this was in contrast to treatment with WD3003 and WD20542, which accumulated 474 

glucose to levels significantly higher than controls perhaps reflecting slower conversion of 475 

intermediates to starch.  Bolling and Fiehn assessed metabolite changes when Chalydomonas 476 

was deprived of iron, nitrogen, sulfur or phosphate (Bolling and Fiehn, 2005).  Among these 477 

conditions only sulfur starvation resulted in elevated G-6-P levels (3.2-fold) and no condition 478 

elevated glucose levels above control values.  479 

While treatment with WD10784 induced lipid and starch accumulation, there was a 480 

commensurate decrease in total biomass and cultures were moderately chlorotic corresponding to 481 

loss of carotenoids and chlorophylls. In contrast, cells treated with WD30030 accumulate large 482 

quantities of lipids (Fig. 6 and Table 1; Supplemental Table 6A) with no effect on starch or 483 

pigments (Fig. 4), and little impact on growth. Twice as many polar metabolite concentrations 484 

were reduced as a consequence of WD10784 treatment, and 25% fewer were increased compared 485 

with WD30030. Many of these measured differences in metabolite levels between compound 486 

treatments were attributable to the WD10784-mediated reduction of some amino acids and 487 

amino acid precursors, and higher concentrations of the same metabolites measured after 488 

WD30030 treatment. Thus, these two compounds offer contrasting metabolite profiles useful to 489 

dissect pathway mechanisms and components leading to TAG and/or starch storage.  In this 490 

regard, WD10784 treatment affected changes in amino acid metabolism similar to that which 491 
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occurs in abiotic stress (Bolling and Fiehn, 2005). Future physiological and omics analyses of 492 

similarities and differences between a “stressful” compound like WD100784 and a “non-493 

stressful” compound like WD30030 or WD20067 are warranted to provide additional 494 

mechanistic details of compound activities. 495 

The metabolite profiling data provided broad coverage for many intermediates of 496 

glycolysis, gluconeogenesis, TCA and glyoxylate cycles, as well as the intersecting Calvin cycle 497 

and oxidative pentose phosphate pathway (OPPP) (Fig. 9). These experiments profiled cells 498 

grown myxotrophically on acetate using both photosynthesis and the exogenous carbon source 499 

via the Calvin and glyoxylate cycles, respectively (Chapman et al., 2015). Acetate can enter 500 

anabolic pathways to produce lipid and starch for storage at multiple points relieving the 501 

necessity of employing photosynthesis solely for this purpose. The chloroplast is the site of fatty 502 

acid synthesis using both fixed CO2 and exogenously supplied acetate, so maintaining the 503 

integrity of this organelle is important to the success of the compounds that function to channel 504 

substrates to fatty acid synthesis and lipid.   505 

The abundance of key metabolites of glycolysis and the Calvin cycle including G-6-P, F-6-506 

P, and X-5-P were significantly elevated for all compounds with variations in the scale of 507 

impact. These pathways operate in parallel sharing metabolites and providing reducing 508 

equivalents for anabolism. The anabolic state of compound-treated cells was apparent from the 509 

higher abundance of many amino acids, lipids and starch. This is in direct contrast to nutrient 510 

starvation conditions such as nitrogen deprivation where starch and lipid accumulate at the 511 

expense of  amino acids, proteins and nucleic acids (Bolling and Fiehn, 2005; Hu et al., 2008; 512 

Cakmak et al., 2012; Wase et al., 2014). Storage of lipids and starch further require substrates 513 

and reducing equivalents supplied by the OPPP and Calvin cycle. The activities of these 514 

pathways were reflected in elevated levels of Ru-5-P, Ru-1,5-P, and X-5-P with treatment using 515 

most compounds. Treatment with WD10461 was distinctive as levels of these intermediates did 516 

not significantly differ and in the case of X-5-P were only slightly elevated.    517 

The unique state of cellular metabolism with compound treatment was further reflected in 518 

the elevation of many amino acids and metabolites that are substrates for their synthesis (Fig. 519 

11).  In contrast, nucleotide bases, while maintained at levels comparable to controls under most 520 

treatments, did not increase in parallel with the storage of lipid and starch and amino acids. 521 

Thymine and adenine levels were approximately equal to control values, while levels of guanine, 522 

 www.plantphysiol.orgon July 18, 2017 - Published by Downloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

 18 

guanosine and the metabolite xanthosine were significantly reduced.  Only deoxyadenosine and 523 

deoxyinosine monophosphate were increased in abundance with some compound treatments. It is 524 

unclear at this time what, if any, linkages there are between the different compound treatments 525 

on nucleotide levels and relationships to cell growth or accumulation of TAG or starch. 526 

A consideration in assessment of the metabolic adaptations to these compounds is how to 527 

determine levels of stress response.  In an attempt to minimize stress, we selected only 528 

compounds that allowed growth and did not become chlorotic over 72 hours of treatment.  529 

Metabolite analyses did not show an increase in nicotianamine and did not identify trehalose, 530 

two compounds that accumulate in nitrogen starved cells and are considered to be protective 531 

(Wase et al., 2014).  On the other hand, accumulation of the antioxidants ascorbic acid, apigenin 532 

and kaempferol after treatment with some compounds might be indicative of oxidative stress.  533 

Indeed, in mammalian cells accumulation of lipid above normal levels in non-adipose tissues is 534 

associated with dysfunction of the endoplasmic reticulum and mitochondria in a process called 535 

lipotoxicity (Unger and Scherer, 2010).  It is possible that algal cells undergo the same stresses 536 

as lipids accumulate above normal levels. 537 

In a separate report Franz and colleagues identified a different set of compounds that also 538 

increase lipid accumulation in marine green algae a subset of which also maintained growth 539 

(Franz et al., 2013).  The most effective compounds increased lipid accumulation 2-fold, while 540 

most only reached 20-40% above control levels.  As no metabolite or other biochemical pathway 541 

analysis for these compounds was reported, nor are they related by structure to the compounds 542 

reported herein, it is not clear if they offer divergent or overlapping mechanisms of action.  It is 543 

noteworthy that apigenin was a compound tested in that library but did not induce lipid 544 

accumulation when added exogenously (Franz et al., 2013).  Targeted selection and assessment 545 

of small compounds as activators of lipid accumulation have also been attempted.  The 546 

compounds were chosen based on activity in other organisms and included signal transducers 547 

such as auxin and gibberellin (Li et al., 2015) and modulators of MAPK kinase pathways (Choi 548 

et al., 2015).  In each case lipid storage was low, less than 25% above controls.  In noted 549 

contrast, the molecules reported herein increased lipid storage to much higher levels and offer 550 

contrasting impacts on metabolite profiles and storage compound accumulation that may be 551 

exploited in the future to evaluate metabolic pathway flow that leads to useful bioproducts in 552 

algae.    553 
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 554 

CONCLUSIONS 555 

 556 

A high throughput screening approach targeting lipid accumulation and growth in green 557 

algae successfully identified lipid activating compounds. Further chemical genetics analyses 558 

resulted in novel findings showing that lipid accumulation can be separated from severe abiotic 559 

stress pathways such as those induced by nutrient deprivation. A subset of the selected 560 

compounds stimulated lipid accumulation without depleting galactolipids, chlorophylls or 561 

carotenoids, providing strong evidence that algal cells can synthesize storage lipids by metabolic 562 

routes, which will not compromise the photosynthetic apparatus.  Further, the distinct 563 

biochemical signatures associated with various compounds may be exploited to further scrutinize 564 

overlapping and divergent metabolic shifts that contribute to lipid, starch and amino acid 565 

synthesis in green algae for which understanding of gene and protein expression is relatively 566 

limited.  Hence this chemical genetic approach offers unique insights into algal metabolism that 567 

are intractable at this time by classical genetic or molecular biological approaches. 568 

The activity of TAG storage stimulating compounds identified using Chlamydomonas, a 569 

valuable model organism but not a useful biofuels feedstock, was also verified in 3 other algal 570 

biofuel production species.  While the level of response between species and between 571 

compounds were not exactly the same for each of the 15 selected compounds, these analyses 572 

provided important verification of the induction of lipid synthesis across microalgal species.  573 

Additionally, two flavonoids under scrutiny for use as nutraceuticals and chemotherapeutics, 574 

kaempferol and apigenin, were highly elevated in compound treated algal cells (Weng and Yen, 575 

2012; Sak, 2014; Sung et al., 2016). Apigenin reached levels more than 1,000-fold higher than 576 

controls under all compound treatments except WD10784. Similar HTS approaches may be 577 

adapted to other algal species to devise screens for additional biotechnological applications, 578 

opening the door for the production of otherwise unforeseen economically impactful compounds.  579 

 580 

 581 

MATERIALS AND METHODS 582 

 583 

Materials, strains and culture conditions 584 
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 585 

All chemical reagents were obtained from Sigma-Aldrich (St. Louis, MO) unless otherwise 586 

stated.  Nanopure water at 18 Ohms was obtained from Milli-Q Millipore (Millipore, Milford, 587 

MA). Clear transparent 384-well and 96-well plates used for growing cells and black-walled flat 588 

bottom plates for fluorescent assays were obtained from BD Falcon (BD Biosciences, San Jose, 589 

CA).  590 

Chlamydomonas reinhardtii CC125 wild type strain was obtained from the 591 

Chlamydomonas Resource Center (University of Minnesota, Twin Cities, MN). Cells were 592 

routinely maintained on tris-acetate phosphate (TAP) agar plates at 25°C with a photon flux 593 

density of 54 μmol m
-2

s
-2 

(Harris, 2009). For the screening, a sterile loop of cells was introduced 594 

to a 250 mL Erlenmeyer flask (100 mL TAP media) with a rubber stopper for facilitating gas 595 

exchange and grown for 72 h in a shaking incubator and the same temperature and light settings. 596 

When N limitation was required to induce lipid accumulation, ammonium chloride was omitted 597 

from the TAP formulation. For screening, cells were harvested in log phase, rinsed either in N-598 

replete or N-deficient TAP media, and then dispensed at low cell density (5 x 10
5
 cells/well) to 599 

384-well microtiter plates (f.vol. 50µL).  600 

 601 

Chemical library screening 602 

 603 

The library of 43,736 compounds used for screening algae for lipid accumulators was obtained 604 

from ChemBridge corporation (http://www.chembridge.com).  Over 60 proprietary chemical 605 

filters (including Lipinski’s rule of 5) and Daylight Tanimoto similarity measures were used to 606 

assure structural diversity, and drug-likeness of compounds for the selected collection. The 607 

compounds were selected based on 3D pharmacophore analysis to increase diversity and 608 

coverage of chemical space and guided by Lipinski’s rule of 5 (Lipinski et al., 1997).  609 

Compounds from 10 mM stock were transferred to the 384-well plates for screening using an 610 

ECHO 555 (Labcyte, Sunnyvale, CA) to give a final concentration of 10 μM. For each plate, two 611 

columns were reserved for the positive (TAP media without nitrogen; N-) and negative controls 612 

(complete TAP media; N+) of lipid accumulation. N+ cultures also served as a positive control 613 

for growth and the N- cultures as negative control for growth. To test the effects of the 614 

compounds on both growth and lipid accumulation, cells from a log phase culture were 615 
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harvested, rinsed 3 times with N+ media, then resuspended to yield 1 x 10
5
 cells in 50 µL. To 616 

each well containing compound, 50 µL cell suspension was dispensed for assessment. On each 617 

plate, the N- controls were prepared from the same starter cell culture except that an aliquot was 618 

rinsed 3 times in N- media and dispensed in same media to wells of the first column of each plate 619 

at a cell density of 5 X 10
5
 cells in 50 µL. The N- cultures doubled approximately once during 620 

the 72 h culture period, while the N+ cultures reached approximately 1 X 10
6
 cells at the end of 621 

the 72 h incubation period. The cell samples in the second column of each plate received the 622 

vehicle, DMSO, alone to serve as the N+ control.  623 

Once filled, the plates were sealed using gas permeable adhesive film (BreathEasy, 624 

Diversified Biotech) and were cultured under cool white fluorescent lights (approximately 50 625 

μmol m-2s-2) at room temperature on racks.  Plates were shaken once per day in a Titermax 626 

shaker (Heildolph North America, Elk Grove, IL) for 5 min at maximum speed. After 72h, plates 627 

were read at OD600 nm to assess growth. The average OD600 for N- control wells over all plates 628 

was 0.46 ± 0.03 and for N+ wells was 0.41 ±  0.04. 629 

After 72h of incubation with compound, Nile Red stain (30 μM f.c. in DMSO) was added 630 

to each well using the ECHO 555 to identify neutral lipid droplets (Greenspan et al., 1985; Chen 631 

et al., 2009).  Plates were incubated for 60 min at 37 °C in the dark.  After incubation, cells were 632 

mixed in a Titermax shaker, maximum speed for 5 min and fluorescence recorded using a 633 

Synergy BioTek Neo multimode reader (BioTek Instruments, Winooski, VT) in fluorescence 634 

mode at 485/590 Ex/Em.    635 

To visually assess lipid droplets within cells, an aliquot of cells after staining with Nile 636 

red were imaged with an Olympus IX81 inverted confocal laser scanning microscope (Olympus 637 

Scientific Solutions Americas Corp., Waltham, MA) using FloView v5.0 software (100X; oil 638 

immersion). Details of emission and excitation wavelengths used are given elsewhere (Wase et 639 

al., 2014). 640 

Employing both the final OD600 and AFU for Nile Red a fold-change (NFC) was 641 

calculated as: 642 

NFC =  
(𝑆𝑎𝑚𝑝𝑙𝑒 𝑁𝑅 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 )/(𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑁𝑅 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)

(𝑂𝐷 𝑆𝑎𝑚𝑝𝑙𝑒)/ (𝑂𝐷 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 )
 

 643 

Selection of primary hits 644 
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 645 

A compound was considered active in C. reinhardtii if the Z’ factor of the plate was > 0.5 and 646 

the Nile Red AFU ratio for compound/control was > 2.5-fold.  Compounds that passed the first 647 

screening were cherry picked from the library and retested for confirmation of growth and lipid 648 

induction using an 8-point titration curve from 0.25 to 30 μM.  Endpoint readings were taken 649 

after 72 h at OD600 and Nile Red staining was used to assess lipid accumulation.  Additionally, 650 

image capture on a BD pathway
TM

 high content Bioimager (BD Biosciences, San Jose, CA) at 651 

10X magnification was performed as a visual confirmation of lipid body accumulation (data not 652 

shown).  The fluorescent lipid bodies appeared as a speckled phenotype within the cells.  This 653 

phenotype was reconfirmed for the final set of 243 compounds showing ≥ 2.5 fold induction at 654 

one or more concentrations using a Nikon Ti-inverted microscope (Nikon Corp., Tokyo) 655 

equipped with Photometrics CoolSNAPHQ2 camera (1392 X 1040 array with14-bit digitization 656 

for 16,000 grey levels capability) (Photometrics, Tuscon, AZ). 657 

 658 

 659 

Chemoinformatics 660 

 661 

For the final subset of 243 hit compounds selected from the primary screen, PubChem 662 

fingerprints were calculated using the ChemViz plugin in Cytoscape v3.2 (Wallace et al., 2011).  663 

Chemicals with a similarity Tanimoto value ≥ 0.7 (1.0 being identical) were used for similarity 664 

network generation. Further results from the re-confirmation studies were used to draw pie charts 665 

on the nodes, and lipid accumulation measured using NR fluorescence values from the 30 μM 666 

treatment for each compound were used to determine node size. For identification of molecular 667 

framework / scaffold and structural clustering, the structures for the 243 compounds and the 668 

corresponding Nile Red fold change values at 8 concentrations were imported into Scaffold 669 

Hunter (Wetzel et al., 2009).  670 

 671 

Photosynthetic pigment analysis 672 

 673 

Analysis of photosynthetic pigments including chlorophyll a, b and total carotenoids was 674 

conducted as reported previously (Wase et al., 2015).  Briefly, cultures (50 ml) were grown with 675 
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or without compound in triplicate at the specified final concentrations for 72h at 25˚C with 676 

shaking in a New Brunswick Innova 43 incubator under a photon flux density of 54 μmol m
-2

s
-677 

2
.  Cells were harvested, media removed and samples lyophilized overnight at -50°C under 678 

vacuum.  To 5 mg dry biomass, 1 mL of 100% methanol was added, cells were homogenized and 679 

pigments extracted at 4°C for 2 hours.  Samples were clarified by centrifugation at 14,000 x g for 680 

5 min and then the supernatant was read at 666, 653 and 470 nm using a UV-visible spectrometer 681 

(BioMate 6; Thermo Scientific, Waltham, MA).  Calculations for chlorophyll a, b and total 682 

carotenoids was computed as given elsewhere (Lichtenthaler and Wellburn, 1983). 683 

 684 

Measurement of starch, citrate and protein levels 685 

 686 

Levels of starch were determined using the Starch Assay kit (Sigma) according to the 687 

manufacturer’s instructions. Briefly, triplicate cultures (100 ml each) were grown either with 688 

compounds at the specified final concentrations or with vehicle (DMSO) in triplicate for 72h as 689 

above.  After 72h, cells were recovered, media removed and cells were freeze-dried overnight.  690 

Five milligrams of freeze dried powder was resuspended in 1 mL 100% methanol and incubated 691 

at 4 °C to extract the pigments.  The colorless pellet was processed as per manufacturer’s 692 

instructions.  Absorbance of the final reaction mixture was measured at 340 nm. 693 

Intracellular citrate levels were determined using Citrate assay kit (Sigma Catalog Number 694 

MAK057) according to the manufacturer’s instructions. 695 

Total protein levels after treatment were measured for cells grown with or without 696 

compounds using the BioRad DC reagent kit (Bio-Rad Corp., Hercules, CA) according to the 697 

manufacturer’s protocol.   698 

 699 

Assessment of compound efficacy in additional green algal species 700 

 701 

To evaluate the activity of the compounds in additional algal species, we employed 702 

Chlorella sorokiniana UTEX 1230, Chlorella vulgaris UTEX 395 and Tetrachlorella alterens 703 

UTEX 2453.  Briefly, cells were maintained on TAP plates and pre-grown in 100 mL liquid 704 

culture for subsequent passage. Cells were plated at a low density (5 x 10
5
 cells/well) in a 96-705 

well plate (200 uL f. vol.) and the compounds were added at 8 different concentrations (0.65 to 706 
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50 μM). Growth was continued under light and the cell suspensions were mixed by shaking once 707 

every 24h. After 72h, Nile Red was added to f.c. 30 µM, and plates were incubated in the dark at 708 

37°C for one hour. Nile Red fluorescence was measured as described above.  Three independent 709 

experiments were run, each in triplicate.  Normalized fold change values were calculated as the 710 

results for compound treated samples compared to control (N+) samples. Data is reported as 711 

mean of three independent experiments (sampled in triplicate) ± standard deviations (SD).  712 

 713 

Lipid analysis  714 

 715 

For identification and quantification of fatty acids after compound treatment, cells were 716 

harvested from 100 ml of control or compound treated culture (f.c. 30 uM) after 72 h growth, 717 

lipids were extracted using the methyl tert-butyl ether (MTBE) method and fatty acid methyl 718 

esters were analyzed by GC-MS as detailed in the Supplemental Methods S1. Data were 719 

presented as the mean ± standard deviation of 3 experiments.  720 

Analysis of triacylglycerides (TAG) and galactolipids (GL) by LC-MS/MS is detailed in 721 

Supplemental Methods S1 under the headings: Targeted analysis of complex lipids from 722 

compound treated cells and Quantification of complex lipids by LC-MRM/MS. 723 

Metabolite extraction, analysis and data processing 724 

Metabolites were extracted from freeze dried cells using MeOH:CHCl3:H2O (5:2:2; v/v/v; 725 

pre-cooled at -20°C).  The extracts were processed and trimethylsilylated as describe in 726 

Supplemental Methods S1.  GC-MS data acquisition and analysis of chromatograms was 727 

performed as previously reported (Wase et al., 2014).  Details of the data analysis strategy are 728 

presented in the Supplemental Methods S1 under the heading: Metabolite data preprocessing and 729 

statistical analysis. 730 

 731 

Statistical assessment and chemoinformatics analysis of compounds   732 

All experiments were done at least in triplicate, and the results were presented as the mean 733 

± standard deviation between experiments. The differences between compound treated and 734 

controls were analyzed by Student’s t-test using GraphPad Prism V6.0. Statistical significance 735 
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was accepted at a level of p < 0.05.  Primary screening data was analyzed using HCS-Analyzer 736 

an open source application for High Content screening (Specht et al., 2015) and 737 

chemoinformatics analysis was done using bioconductor ChemmineR package (Schaffer, 2003) 738 

or Tibco Spotfire Lead Discovery.  Structural rendering of the compounds was done using 739 

ChemDraw Professional 14 suite (PerkinElmer).  Compound similarity network generation was 740 

performed using Cytoscape ChemViz plugin (http://www.cgl.ucsf.edu/cytoscape/chemViz/) and 741 

molecular framework/scaffolds were identified using Scaffold Hunter (Wetzel et al., 2009).   742 
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Chlamydomonas reinhardtii can be found in the PubChem data repository under BioAssay 753 

record number 115937.  Data from the confirmatory screen evaluating 367 potential bioactive 754 

compounds can be found in BioAssay record number 1159536. 755 
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Targeted analysis of complex lipids from compound treated cells; Quantification of complex 761 

lipids by LC-MRM/MS; Metabolite extraction and analysis by GC-MS 762 
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Supplemental Figure S1. Experimental workflow in the high throughput screening.   763 

Supplemental Figure S2. Representative plate D088 showing log2 NR fold change intensity.   764 

Supplemental Figure S3. Signal distribution in controls and compound treated samples. 765 

Supplemental Figure S4. SSMD (Strictly standard mean difference) analysis of 124 plates in 766 

the primary screen.  767 

Supplemental Figure S5. Heatmap profile showing lipid induction in 243 hit compounds from 768 

the confirmatory screen.   769 

Supplemental Table S1. Fold change in fatty acid species from cells treated with selected 770 

compounds. 771 

Supplemental Table S2. Lipid accumulation is increased in a dose dependent manner by15 772 

selected hit compounds in 4 algal species (n=3). 773 

 774 

Supplemental Material 2 includes: 775 

Supplemental Table S3. Data from the confirmatory screening of 367 compounds 776 

Supplemental Table S4. Log2 Fold Change values for metabolites from compound treated 777 

versus control cells 778 

Supplemental Table S5. Raw intensities for metabolites from compound treated versus control 779 

cells 780 

Supplemental Table S6. A. Starch and lipid data after compound treatment used to calculate 781 

fold change values. B. Citrate levels in compound treated cells. 782 
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 783 

FIGURE LEGENDS 784 

 785 

Figure 1. Summary of results of high throughput screening.  A, Z-factor calculation for each 786 

of 124 plates totaling 43,736 compounds.  The average Z’ value was 0.78 ± 0.08 with a 787 

coefficient of variation (CV) of 14.4%. B, Growth measured as OD600 in the presence of 788 

compound after 72h. The average of the N+ control cells was 0.41 ± 0.04. C, Lipid 789 

accumulation measured as relative fluorescence after Nile Red (NR) staining of cells treated 790 

with compound relative to cells treated with vehicle (DMSO). D, Confirmation of hits and 791 

dose response. Data for 243 compounds are shown fitting the concentration response curve 792 

(from 0.25 μM to 30 μM) to lipid accumulation. The scale bar represents the relative fold 793 

change of treatment to control (N+).  794 

 795 

Figure 2. Structural comparisons of hits from the primary screen. A, Network view of lipid 796 

accumulating small molecules. All small molecules identified through the primary screen and 797 

verified using an 8-point dose response curve were clustered according to their Tanimoto 798 

similarity score. Each node represents a unique small molecule. Edges represent the structural 799 

similarities at a Tanimoto score cuttoff of 0.70. Data for the relevant compound at 30 μM 800 

(red), 15 μM (green) and 10 μM (blue) are mapped in a pie chart. The node size represents 801 

the fold change of each chemical at the 30 μM concentration. A small portion of the network 802 

is magnified to show clustered compounds having structural similarities. B, Clustering 803 

analysis of active compounds using Ward’s linkage method. Distance was calculated based 804 

on Tanimoto coefficient and Estate bit fingerprints were used for similarity calculations.  One 805 

of the clusters was highlighted showing the admantane moiety.  Note some of the compounds 806 

are presented as salts of HCl; 2 HCl molecules indicate chiral enantiomers. 807 

 808 

Figure 3. Lipid body accumulation in C. reinhardtii induced by diverse compounds. 809 

Compounds are grouped according to their structural similarities as described in the text. 810 

Cultures were treated with 10 μM compound and the corresponding lipid accumulation was 811 

visualized using confocal microscopy after 72h in culture. 812 

 813 

Figure 4. Growth of cells and accumulation of protein during compound treatment. A, Cells 814 

were treated with 30 µM of the specified compounds as indicated and OD600 was monitored 815 

over 72h (n=3; ± SD); B, after harvesting, total protein levels were measured per 10
6 

cells. 816 
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Bar height indicates the mean of 3 biological replicates (n=3 ± SD).  Significance of 817 

difference in the levels of total protein was assessed using ANOVA to compare the treated 818 

samples to controls (* p<0.05; **, p< 0.01; ***, p< 0.001).  819 

 820 

Figure 5. Assessment of cellular macromolecule accumulation after treatment with selected 821 

compounds for 72h. A, Total starch; B, Total carotenoids; C, Chlorophyll a; and D, 822 

Chlorophyll b. Bar height is the mean of 3 independent experiments (± SD). The controls 823 

were values obtained for cultures treated with the vehicle DMSO. ANOVA (JMP v11) was 824 

applied to determine the significance of differences in the levels of total protein as compared 825 

to untreated control cells (N+) (* p<0.05; **, p< 0.01; ***, p< 0.001). 826 

 827 

Figure 6. Identification and quantification of complex lipids by LC-MS/MS. A, triglycerides 828 

(TAG) B, galactolipids (GL) and C, relative quantities of TAG and GL as indicated. Height 829 

of the bar is the mean of the absolutely quantity of the measured lipid species and error bars 830 

give the S.E.M (* p<0.05 relative to control; n=3). The relative fold change compared with 831 

control values are listed below each bar for A and B. 832 

 833 

Figure 7.  Univariate and multivariate analysis of the GC-MS metabolites. A, PCA of 834 

primary metabolites/features of compound treated and untreated control samples.  Control 835 

(black), WD30030 (red), compound WD20542 (cyan), compound WD10461 (blue), 836 

compound WD20067 (green) and compound WD10784 (pink).  B, Partial Least Square-837 

Discriminate Analysis (PLS-DA) of the data for better separation of the samples to identify 838 

features that are responsible for differentiation in the treatment. C, Top 20 metabolites with 839 

significantly different abundance between compound treatments based on the VIP projection 840 

deduced using Metaboanalyst web tool (http://www.metaboanalyst.ca). 841 

 842 

Figure 8.  Summary of metabolite profiling experiments. A, Heatmap showing the metabolite 843 

abundance profiles of compound treated versus control cells.  The expression levels of the top 844 

50 metabolites selected after applying ANOVA p < 0.05 are illustrated.  B, Venn diagram 845 

showing the unique and common differentially changed features/metabolites in different 846 

compound treated metabolomes. The numbers of peaks that were not significantly changed 847 

(33) are shown at the bottom right. C, Metabolite peaks generated after peak picking and 848 

deconvulation, were identified using the MassBank and GOLM metabolome libraries.  For 849 
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each identified feature, a KEGG compound code was assigned as per KEGG brite and 850 

classified according to their biological role. 851 

 852 

Figure 9. Pathway map representing the impact of various compounds on carbon 853 

metabolism.  Red bar indicates significantly increased levels of metabolites in compound 854 

treated samples relative to controls; blue indicates significantly decreased levels of 855 

metabolites in compound treated samples relative to controls; and white indicates no 856 

significant difference between treated and control samples. For quantitation of changes see 857 

Table 4 and Supplemental Information 1 Tables S4A and S4B. 858 

 859 

Figure 10. Pathway map indicating the impact of various compounds on amino acid 860 

biosynthesis.  Red bar indicates significantly increased levels of metabolites in compound 861 

treated samples relative to controls; blue indicates significantly decreased levels; and white 862 

indicates no significant difference between treated and control samples.  For quantitation of 863 

changes see Table 4.   864 

 865 
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Table 1. Identification and quantitation of fatty acid species from cells treated with selected compounds.  866 

Group Compound C16:0 C16:1 cis Δ9 C16:3 cis Δ 7,10,13 C16:4 cis Δ 4,7,10,13 C18:0 C18:1 cis Δ 9 C18:2 cis Δ 9,12 C18:3 cis Δ 5,9,12 C18:3 cis Δ 9,12,15 Total_FA p-value 

 
Control 2.76 ± 0.05 0.43 ± 0.02 0.44 ± 0.05 1.11 ± 0.09 0.37 ± 0.10 0.52 ± 0.19 0.40 ± 0.07 0.29 ± 0.02 2.18 ± 0.43 8.50 ± 0.75 

 

1 WD40844 10.33 ± 0.77 0.48 ± 0.04 0.45 ± 0.05 1.89 ± 0.17 1.31 ± 0.09 7.80 ± 0.72 4.01 ± 0.40 1.91 ± 0.20 2.39 ± 0.19 30.57 ± 2.62 <0.0001 

1 WDTHQ130 9.20 ± 0.34 0.56 ± 0.04 0.50 ± 0.03 2.07 ± 0.03 1.31 ± 0.04 7.35 ± 0.17 3.92 ± 0.08 2.40 ± 0.04 2.10 ± 0.07 29.42 ± 0.82 <0.0001 

1 WD40157 4.49 ± 0.25 0.30 ± 0.03 0.15 ± 0.01 0.64 ± 0.04 0.58 ± 0.01 2.57 ± 0.13 1.10 ± 0.07 0.58 ± 0.03 0.78 ± 0.02 11.20 ± 0.52 NS 

1 WD10784 7.11 ± 0.78 0.28 ± 0.03 0.28 ± 0.03 0.78 ± 0.04 0.58 ± 0.12 0.79 ± 0.30 1.06 ± 0.43 0.52 ± 0.08 2.29 ± 0.84 13.70 ± 1.07 0.01 

2 WD10738 13.48 ± 1.39 0.67 ± 0.07 0.40 ± 0.06 1.83 ± 0.26 1.32 ± 0.15 6.74 ± 0.97 3.39 ± 0.49 1.61 ± 0.24 2.30 ± 0.29 31.73 ± 3.90 <0.0001 

2 WD10599 5.23 ± 0.42 0.23 ± 0.02 0.19 ± 0.02 1.05 ± 0.08 0.82 ± 0.05 3.57 ± 0.31 1.41 ± 0.14 1.39 ± 0.10 1.31 ± 0.11 15.20 ± 1.24 0.0002 

2 WD10461 8.77 ± 1.38 0.73 ± 0.14 0.34 ± 0.06 1.41 ± 0.19 1.28 ± 0.19 6.43 ± 1.11 3.12 ± 0.56 1.28 ± 0.26 2.08 ± 0.37 25.45 ± 4.21 <0.0001 

2 WD10256 7.05 ± 0.45 0.39 ± 0.02 0.39 ± 0.03 1.49 ± 0.09 1.04 ± 0.06 5.87 ± 0.34 2.95 ± 0.16 1.60 ± 0.09 1.57 ± 0.09 22.34 ± 1.34 <0.0001 

2 WD10264 6.29 ± 0.13 0.57 ± 0.01 0.41 ± 0.01 1.80 ± 0.04 1.02 ± 0.02 6.14 ± 0.04 2.91 ± 0.02 1.81 ± 0.03 1.55 ± 0.03 22.50 ± 0.30 <0.0001 

     3 WD30030 10.51 ± 2.65 4.63 ± 4.06 0.43 ± 0.09 2.60 ± 0.44 1.37 ± 0.26 9.08 ± 1.88 4.33 ± 0.93 1.78 ± 0.84 2.83 ± 0.60 37.55 ± 8.02 <0.0001 

3 WD30999 4.86 ± 0.06 0.43 ± 0.01 0.23 ± 0.01 1.01 ± 0.03 0.85 ± 0.04 4.47 ± 0.15 1.95 ± 0.06 1.01 ± 0.05 0.91 ± 0.01 15.72 ± 0.38 <0.0001 

4 WD10872 4.67 ± 0.37 0.32 ± 0.03 0.24 ± 0.02 1.13 ± 0.08 0.84 ± 0.06 2.20 ± 1.12 1.82 ± 0.13 0.86 ± 0.03 2.88 ± 0.79 14.96 ± 1.06 0.0004 

4 WD10615 4.27 ± 0.32 0.35 ± 0.04 0.25 ± 0.02 1.47 ± 0.10 0.68 ± 0.05 4.52 ± 0.38 1.84 ± 0.17 0.83 ± 0.07 0.86 ± 0.07 15.06 ± 1.13 0.0003 

5 WD20542 6.58 ± 0.61 0.39 ± 0.03 0.25 ± 0.02 1.21 ± 0.07 1.12 ± 0.10 5.12 ± 0.41 2.55 ± 0.20 1.22 ± 0.09 1.62 ± 0.13 20.06 ± 1.64 <0.0001 

5 WD20067 8.25 ± 1.58 0.43 ± 0.09 0.29 ± 0.07 1.27 ± 0.29 1.19 ± 0.19 5.30 ± 1.07 2.58 ± 0.56 1.24 ± 0.32 1.86 ± 0.34 22.41 ± 4.48 <0.0001 

 867 

Values are the mean of three experiments ± SD given in µg/5x106 cells.  Cultures (100 ml) were treated with 30 µm of the indicated compound for 72 hr except WD10784 where 868 

the dose was 10 μM. Significant changes in the total FA levels for compound treatment relative to control (vehicle treated) samples were determined using student’s t-test (p-value; 869 

n=3).  870 
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Table 2. Classification of identified metabolites  871 
 872 

 873 

Metabolite class Total unique metabolites 

Standard amino acids 15 

Phosphorylated compound 14 

Fatty acids* 9 

Carbohydrates and sugars 9 

Nucleosides 7 

Biogenic amines 7 

Carboxylic acid 5 

Cofactors 1 

Vitamins 2 

Unclassified 8 

Unknown 48   
*Only those FA that were identified by GC-MS in the polar extract 874 
 875 

  876 
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Table 3. Summary of differences in abundance of the 125 metabolites after compound 877 
treatment.  Significantly changed metabolites were identified by applying p < 0.05 and log2 878 
fold change = 1.  879 
 880 
 881 

 

WD30030 vs 

Control 

WD10784 vs 

Control 

WD10461 vs 

Control 

WD20542 vs 

Control 

WD20067 vs 

Control 

Lower 12 28 19 10 17 

No change 68 62 71 75 89 

Higher 45 35 35 40 19 

 882 
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Table 4.  Polar metabolites identified and compared between controls and compound treated cells (WD30030, 030; WD10784, 883 
784; WD10461, 461; WD20542, 542; WD20067, 067). 884 
Metabolite 030/Ctl 784/Ctl 461/Ctl 542/Ctl 067/Ctl 030_pval 784_pval 461_pval 542_pval 067_pval 

 

Fold change Treatment/Control p-value 

Glycolysis & Gluconeogenesis 

D-Glucose 6.44 0.63 0.50 3.14 1.73 0.0001 0.1706 0.1676 0.0057 0.4262 

Glucose-6-phosphate 21.87 339.33 16.54 37.90 8.10 0.0000 0.0000 0.0000 0.0000 0.0000 

Fructose-6-phosphate 16.65 359.69 5.54 33.60 2.53 0.0000 0.0000 0.0000 0.0000 0.0138 

Fructose-1,6-

diphosphate 0.47 0.71 0.60 0.44 0.21 0.0000 0.0015 0.0031 0.0000 0.0000 

Phosphoenolpyruvate  0.27 0.36 0.33 0.26 0.52 0.0000 0.0000 0.0000 0.0000 0.0000 

Glycerol-3-phosphate 0.43 0.84 0.64 0.47 0.92 0.0000 0.0256 0.0000 0.0000 0.2569 

2,3-Bisphospho-

glycerate 0.41 1.75 0.79 0.46 0.14 0.0000 0.0051 0.2202 0.0002 0.0000 

Lactic acid  5.68 0.14 0.73 3.41 1.66 0.2193 0.2530 0.8434 0.3969 0.7486 

           Photorespiration/Carbon Fixation 

Erythrose-4-phosphate 0.50 0.93 0.68 0.52 0.72 0.0000 0.4176 0.0000 0.0000 0.0004 

Ribulose-5-phosphate 3.25 6.69 0.71 3.20 6.64 0.0035 0.0000 0.4142 0.0040 0.0000 

Ribulose-1,5-

Bisphosphate 10.19 8.73 1.56 11.46 26.72 0.0000 0.0000 0.3387 0.0000 0.0000 

Xylulose-5-phosphate  9.92 14.72 3.08 13.33 23.59 0.0000 0.0000 0.0224 0.0000 0.0000 

Glycerol-2-phosphate 5.95 6.67 4.27 3.73 1.18 0.0000 0.0000 0.0000 0.0000 0.1937 

           TCA/Glyoxylate Cycles 

Isocitric acid 3.78 2.01 2.51 2.73 2.00 0.0034 0.1433 0.0461 0.0263 0.1520 

⍺Keto-glutaric acid 0.67 1.68 1.16 0.70 1.90 0.0804 0.0224 0.5136 0.1106 0.0055 

Succinic acid  4.06 5.98 3.76 3.35 5.55 0.0000 0.0000 0.0001 0.0004 0.0000 

Fumaric acid 2.60 1.94 1.83 2.27 1.52 0.0163 0.1127 0.1399 0.0394 0.3290 

3-Oxalomalic acid 0.58 1.41 0.79 0.39 1.38 0.2388 0.4555 0.6066 0.0508 0.4951 

Oxalic acid  34.21 47.64 44.27 28.63 22.98 0.0000 0.0000 0.0000 0.0000 0.0000 

           Carbohydrate Metabolism 

Allose 1.78 0.34 0.36 1.30 1.03 0.0072 0.0000 0.0000 0.2192 0.9047 

Galactose  2.79 0.47 0.43 1.55 1.15 0.0001 0.0076 0.0031 0.0794 0.5930 

Myo-Inositol  2.23 2.35 2.22 3.31 2.08 0.0000 0.0000 0.0000 0.0000 0.0000 

Tagatose 2.73 19.49 3.48 4.16 0.95 0.0000 0.0000 0.0000 0.0000 0.8081 

Sorbitol-6-phosphate  2.16 3.24 1.45 1.84 1.12 0.0519 0.0040 0.3679 0.1240 0.7962 

Mannitol  1.25 0.40 0.44 0.72 0.61 0.1524 0.0000 0.0000 0.0447 0.0060 

Maltotriose  0.77 0.06 0.22 0.16 0.11 0.2165 0.0000 0.0000 0.0000 0.0000 

Lactose 0.61 0.05 0.19 0.01 0.07 0.8621 0.3978 0.5945 0.2216 0.4616 

Ribitol 0.52 1.17 0.79 0.52 2.11 0.0000 0.1758 0.0392 0.0000 0.0000 

Galactitol 0.60 1.26 0.89 0.57 2.15 0.0001 0.0529 0.3114 0.0000 0.0000 

Kestose 1.54 0.93 2.74 1.93 0.39 0.0265 0.7232 0.0000 0.0009 0.0000 

Arabinose-5-phosphate 4.58 7.58 6.23 3.80 1.98 0.0000 0.0000 0.0000 0.0000 0.0000 

Maltose  0.69 0.08 0.34 0.56 0.75 0.0006 0.0000 0.0000 0.0000 0.0093 

           Starch synthesis 

Indole-3-acetonitrile  2.31 2.21 2.23 2.11 2.78 0.0000 0.0000 0.0000 0.0000 0.0000 

Maltose  0.69 0.08 0.34 0.56 0.75 0.0006 0.0000 0.0000 0.0000 0.0093 

           Lipid Metabolism 

Glycerol 1-phosphate  0.74 1.15 1.08 0.45 0.69 0.4029 0.6889 0.8350 0.0356 0.3204 

Mandelic acid, 3,4-OH 0.66 0.70 0.67 0.52 1.41 0.0791 0.1365 0.0872 0.0071 0.1399 
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Biotin 1.07 0.33 0.36 0.43 1.02 0.8335 0.0041 0.0053 0.0140 0.9467 

Isoascorbic acid  1.01 5.61 3.29 2.25 1.38 0.9643 0.0000 0.0000 0.0038 0.2744 

Inositol-2-phosphate 2.99 4.01 3.51 2.60 1.60 0.0000 0.0000 0.0000 0.0000 0.0000 

           Amino Acid Metabolism 

Alanine  21.94 4.08 0.05 6.11 7.25 0.0506 0.4024 0.1578 0.2638 0.2334 

Serine  3.33 0.56 1.18 0.81 5.53 0.0000 0.0371 0.5128 0.4137 0.0000 

Tyrosine  4.04 0.94 1.68 2.66 1.86 0.0000 0.7164 0.0016 0.0000 0.0003 

Leucine  3.95 0.61 1.80 1.60 2.44 0.0000 0.0017 0.0036 0.0052 0.0010 

Valine  20.34 89.52 51.44 32.91 23.81 0.0000 0.0000 0.0000 0.0000 0.0000 

Glutamic acid  1.24 0.22 0.34 0.42 0.96 0.5271 0.0008 0.0078 0.0232 0.9110 

Proline  1.96 3.10 3.16 3.02 3.25 0.0882 0.0052 0.0040 0.0050 0.0040 

Arginine  6.28 24.11 12.37 7.72 11.49 0.0006 0.0000 0.0000 0.0001 0.0000 

Histidine  1.08 0.41 0.67 0.79 1.14 0.7645 0.0068 0.1645 0.3930 0.6405 

Lysine 5.10 1.13 3.01 3.83 2.27 0.0000 0.4961 0.0000 0.0000 0.0000 

Threonine  2.04 0.83 1.59 1.90 1.89 0.0001 0.3394 0.0131 0.0006 0.0011 

Isoleucine  2.67 0.48 1.23 2.15 1.74 0.0001 0.0071 0.3865 0.0021 0.0286 

Sarcosine  5.38 17.08 14.95 4.35 0.90 0.0581 0.0016 0.0023 0.1004 0.9147 

Phenylpyruvic acid 3.18 1.01 1.91 2.42 1.27 0.0000 0.9562 0.0024 0.0000 0.2621 

5-Aminovaleric acid 3.55 2.20 2.17 2.17 1.83 0.0000 0.0001 0.0001 0.0001 0.0030 

Homocysteine  0.44 1.10 0.68 0.40 0.36 0.0100 0.7430 0.2111 0.0043 0.0025 

2-Aminoadipic acid 1.43 24.83 8.49 5.36 2.12 0.0346 0.0000 0.0000 0.0000 0.0001 

Cysteic acid 0.52 0.12 0.12 0.33 0.61 0.0038 0.0000 0.0000 0.0000 0.0358 

Shikimic acid  2.72 20.25 12.45 4.21 5.99 0.0000 0.0000 0.0000 0.0000 0.0000 

L-Citrulline 70.98 138.09 99.38 81.02 117.92 0.0000 0.0000 0.0000 0.0000 0.0000 

Ornithine 1.46 0.25 0.54 1.11 1.01 0.1602 0.0000 0.0356 0.7105 0.9824 

N-acetyl-lysine 6.21 1.77 3.95 4.35 3.23 0.0000 0.0013 0.0000 0.0000 0.0000 

Chorismic acid 41.45 3.56 29.65 36.33 1.17 0.0000 0.0048 0.0000 0.0000 0.7347 

Homoserine 0.52 1.39 0.66 0.48 1.57 0.0035 0.1231 0.0557 0.0012 0.0375 

Norvaline  5.58 9.70 5.11 6.07 2.14 0.0000 0.0000 0.0000 0.0000 0.0001 

           Nucleotide metabolism 

Uracil  0.50 0.24 0.32 0.49 0.69 0.0000 0.0000 0.0000 0.0000 0.0239 

Thymine  0.64 1.30 1.08 0.90 1.26 0.0139 0.1344 0.6438 0.5592 0.1915 

Adenine 1.13 0.85 1.22 1.06 1.08 0.4083 0.3163 0.1949 0.6950 0.6238 

Guanine  0.30 0.22 0.37 0.33 0.34 0.0000 0.0000 0.0000 0.0000 0.0000 

Guanosine  0.13 0.04 0.06 0.09 0.05 0.0000 0.0000 0.0000 0.0000 0.0000 

Adenosine 0.03 0.00 0.01 0.10 0.06 0.0000 0.0000 0.0000 0.0000 0.0000 

2-Deoxyadenosine 1.69 0.53 0.05 5.05 95.44 0.8309 0.8020 0.2494 0.5070 0.0439 

2'-Deoxyinosine 5'-

monophosphate  5.66 1.73 3.47 4.50 1.25 0.0000 0.0002 0.0000 0.0000 0.1238 

Beta-Alanine  4.09 36.26 14.76 9.10 13.19 0.0012 0.0000 0.0000 0.0000 0.0000 

Xanthosine  0.33 0.44 0.37 0.66 0.93 0.0000 0.0027 0.0004 0.0845 0.7596 

           Other 

Phytol 0.25 0.58 2.11 0.05 0.20 0.4969 0.7847 0.6870 0.2181 0.4750 

Tocopherol 0.18 0.27 0.53 0.71 0.19 0.0000 0.0000 0.0116 0.1435 0.0000 

Tocopherolacetate 1.11 0.54 0.88 0.89 3.39 0.7197 0.0514 0.6783 0.6996 0.0001 

Nicotianamine 1.14 0.41 0.85 0.66 0.62 0.8029 0.1195 0.7629 0.4246 0.3990 

Kaempferol 7.59 0.75 2.17 3.60 3.68 0.0000 0.1494 0.0001 0.0000 0.0000 

Apigenin 2088.8 25.71 1284.4 1216.4 713.14 0.0000 0.0000 0.0000 0.0000 0.0000 

Homogentisate 0.71 0.88 0.87 0.73 1.33 0.0083 0.2964 0.2840 0.0140 0.0244 

Glucarate 0.92 4.19 3.36 1.97 0.65 0.7869 0.0000 0.0003 0.0362 0.2208 
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Ascorbic acid  0.67 8.75 5.44 2.05 0.72 0.0704 0.0000 0.0000 0.0010 0.1569 

 5-Hydroxy-tryptamine 10.36 4.43 8.69 6.34 2.22 0.0000 0.0000 0.0000 0.0000 0.0000 

Pyroglutamic acid  3.67 0.14 0.53 2.43 1.96 0.0001 0.0000 0.0635 0.0055 0.0390 

Gallic Acid 0.65 1.04 0.86 0.58 1.92 0.0023 0.7562 0.2822 0.0002 0.0000 

Gallic acid ethyl ester  1.13 1.96 1.56 1.40 2.45 0.3605 0.0000 0.0017 0.0150 0.0000 

2-Piperidinecarboxylic 

acid  5.92 0.53 1.84 2.96 2.83 0.0000 0.0008 0.0005 0.0000 0.0000 

Phosphoric acid 0.56 0.13 0.27 0.35 0.90 0.0010 0.0000 0.0000 0.0000 0.5464 

            885 
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Table 5.  Estimates of compound activity in four algal strains assayed using Nile red fluorescence to 887 
measure neutral lipid accumulation. 888 

 

 

C.reinhardtii  

CC125 

C. vulgaris  

UTEX395 

C. sorokiniana  

UTEX1230 

Tetrachlorella alterns  

UTEX2453 

 
Structural Group Compound Nile Red fold change (NFC) ± SEM  

1 WD40844 9.83 ± 0.21 1.66 ± 0.24 2.42 ± 0.13 2.80 ± 0.20 

 
1 WDTHQ130 6.46 ± 0.22 21.20 ± 3.10 6.17 ± 0.86 15.92 ± 0.70 

 
1 WD40157 2.90 ± 0.40 9.04 ± 1.13 3.59 ± 0.32 4.46 ± 0.15 

 
1 WD10784

*
 15.75 ± 3.27 6.51 ± 0.78 4.71 ± 0.95 11.33 ± 0.52  

2 WD10738 13.65 ± 0.26 16.05 ± 1.87 4.79 ± 0.52 16.47 ± 0.84 

 
2 WD10599 11.83 ± 0.25 11.86 ± 0.54 5.81 ± 0.83 17.32 ± 3.32 

 
2 WD10461 14.57 ± 1.27 15.82 ± 2.47 4.78 ± 0.27 5.62 ± 0.17 

 
2 WD10256 7.41 ± 1.00 13.80 ± 3.10 5.94 ± 0.61 24.49 ± 3.25 

 
2 WD10264 10.01 ± 0.64 14.40 ± 1.18 5.48 ± 1.01 27.66 ± 1.66 

 
3 WD30030 10.07 ± 0.84 16.60 ± 3.74 6.41 ± 1.07 19.05 ± 2.09 

 
3 WD30999 10.09 ± 1.16 22.59 ± 2.66 7.15 ± 1.23 26.19 ± 0.82 

 
4 WD10872 9.68 ± 1.42 11.53 ± 1.22 3.94 ± 0.84 6.62 ± 1.05 

 
4 WD10615 10.12 ± 1.30 11.77 ± 0.41 4.80 ± 0.21 10.69 ± 1.35 

 
5 WD20542 15.23 ± 1.85 13.51 ± 0.03 5.92 ± 0.87 10.30 ± 0.41 

 
5 WD20067 10.61 ± 1.86 24.24 ± 1.19 5.40 ± 0.75 12.77 ± 1.07 

 

Cultures (200 uL) were treated with 30 M compound for 72 hr except for WD10784 (highlighted by asterisk) 889 
where the concentration was 10 M.  Data is presented in NFC as mean of three experiments ± SEM.  Additional 890 
results for concentrations ranging from 0.625 to 50 M is presented in supplemental information Table S2. 891 
  892 
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Figure 1. Summary of results of high throughput screening.  A, Z-factor calculation for each of 124 plates totaling 43,736 compounds.  The average Z’ value was 0.78 ±
0.08 with a coefficient of variation (CV) of 14.4%. B, Growth measured as OD600 in the presence of compound after 72h. The average of the N+ control cells was 0.41 ±
0.04. C, Lipid accumulation measured as relative fluorescence after Nile Red (NR) staining of cells treated with compound relative to cells treated with vehicle (DMSO). 
D, Confirmation of hits and dose response. Data for 243 compounds are shown fitting the concentration response curve (from 0.25 µM to 30 µM) to lipid accumulation. 
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Figure 2. Structural comparisons of hits from the primary screen. A, Network view of lipid accumulating
small molecules. Compounds identified in the primary screen and verified using an 8-point dose response
curve were clustered according to their Tanimoto similarity score. Each node represents a unique small
molecule. Edges represent the structural similarities at a Tanimoto score cuttoff of 0.70. Data for the relevant
compound at 30 µM (red), 15 µM (green) and 10 µM (blue) are mapped in a pie chart. The node size
represents the fold change of each chemical (30 µM). A portion of the network is magnified to show clustered
compounds having structural similarities. B, Clustering analysis of active compounds using Ward’s linkage
method. Distance was calculated based on Tanimoto coefficient and Estate bit fingerprints were used for
similarity calculations. One of the clusters was highlighted showing the admantane moiety. Note, some of the
compounds are presented as salts of HCl; 2 HCl molecules indicate chiral enantiomers.
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