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Overcoming the spin-multiplicity limit of entropy by means of lattice degrees of freedom:
A minimal model
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The discovery of the giant magnetocaloric effect with isothermal field-induced entropy change beyond the
spin-multiplicity limit gave rise to some indistinctness in the literature regarding the applicability of fundamental
thermodynamics in data analysis. Those misleading interpretations concerning, for instance, the rigorousness
of phenomenological thermodynamics are clarified here. Specifically, it is shown that the Maxwell relation
incorporates contributions from the spin degrees of freedom and potential lattice degrees of freedom into the
isothermal entropy change. A minimalist model involving pairs of exchange-coupled, mobile Ising spins is
investigated. It is explicitly shown that lattice degrees of freedom can be activated via applied magnetic fields
and the integrated Maxwell relation contains this lattice contribution. A simple and intuitive analytic expression
for the isothermal entropy change in the presence of field-activated lattice degrees of freedom is provided.
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I. INTRODUCTION

The quest for advanced magnetocaloric materials has
intensified in recent years due to their important role in future
energy-efficient and environmentally friendly refrigeration
technologies.1–6 An appreciable magnetocaloric effect (MCE)
with sizable isothermal entropy change and adiabatic temper-
ature change in moderate applied magnetic fields requires new
magnetic materials with tailored magnetocaloric properties.
This search defines one of the today’s materials science
frontiers.7–10 Most of the present research activities focus on
the giant MCE found in bulk rare-earth alloys.11–14 Recently,
even nanotechnological approaches have been exploited to
tailor microscopic magnetic parameters such as exchange and
anisotropy for advanced magnetocaloric materials design.19–23

However, recent discoveries of a giant MCE, which permit
overcoming the magnetic limit24–26 for the isothermal entropy
change, make it evident that optimization of magnetic inter-
actions alone will not suffice for ultimate optimization of
the MCE. Sparked by this insight, an even more intensified
but perhaps somewhat unfocused search for new giant MCE
materials can be observed in recent years.

Despite the growing quantity of publications and growth
of insight, it seems clear that some fundamental aspects
of thermodynamics and statistical mechanics appear to be
overlooked by some in the literature, leading to statements
such as “. . .the colossal MCE was obtained from magnetic
measurements using Maxwell’s relation, which only reflects
changes in magnetic entropy.”27 More commonly, many
authors refer to the isothermal entropy change, which is
the entropy change at constant temperature T induced by a
change of the magnetic field, as magnetic entropy change.28–32

This nomenclature can be very misleading and appears to be
subliminally interpreted by others, not explicitly referenced
here, as a contribution to the entropy change which exclusively
originates from spin degrees of freedom. This interpretation
is in general wrong and can only be applied in the absence
of magnetoelastic interactions. We argue here that the use of
�SM should be avoided, the index M should be suppressed, and

the term isothermal entropy change should be used instead. In
contrast to certain statements in the literature, it is not a matter
of debate whether the integrated Maxwell relation contains all
of the field-induced isothermal entropy change for systems in
a homogeneous phase. If the Maxwell relation is applicable,
meaning the second-order mixed derivatives of the Gibbs free
energy are mathematically well defined and identical, the
isothermal entropy change obtained from integration of the
magnetization derivative contains all possible field-induced
contributions. Among our goals here is to convey this message
following the tradition of manuscripts such as the work by
Pecharsky et al. in Ref. 33: discussing fundamental aspects of
the underlying thermodynamics of the MCE.

In addition, there seems to be some confusion about the
conditions allowing for contributions of lattice degrees of
freedom to the isothermal entropy change. The vagueness often
seen in discussions on this subject has the potential to confuse
materials scientists searching for magnetocaloric materials
which overcome the magnetic limit for the isothermal entropy
change. The latter is determined by the logarithm of 2J + 1,
where J is the total atomic angular moment when a localized
moment picture can be applied. One can anticipate that
magnetic materials relying only on the limited J multiplicity
for isothermal entropy change will not be able to compete with
the proposed electrocaloric materials.34 Here, quantization is
not the limiting factor and large changing electric fields are
much easier realized than changing magnetic fields. Therefore,
competitive magnetocaloric materials need to make use of
entropy contributions of nonmagnetic degrees of freedom
which still can be activated through magnetic fields.

The objective of this work is twofold. First, we aim
to reemphasize the rigorous nature of relations from phe-
nomenological thermodynamics such as the Maxwell relation.
Special emphasis is on the fact that the isothermal entropy
change determined via Maxwell’s relation is not limited to
magnetic degrees of freedom. Second, we investigate a model
system which we consider to be as simple as possible and as
complex as necessary to show under which conditions lattice
degrees of freedom can be activated and contribute to the
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magnetic field-induced isothermal entropy change. We finally
bring these two points together and show explicitly that the
integrated Maxwell relation contains this lattice contribution,
if present, despite the fact that the field integral is taking place
over the temperature derivative of the magnetization. It is the
absence of elastic variables in the Maxwell relation which, in
a naı̈ve view, may appear counterintuitive and hence can lead
to the wrong conclusion that field-dependent lattice effects are
not included in this integral.

Contributions to the isothermal entropy change which
are not magnetic in origin can only exist if there is cou-
pling between spin and elastic degrees of freedom, giv-
ing rise to a free-energy coupling term with a depen-
dence on the magnetic field H such that the total Gibbs
free energy G reads Gtotal(T ,H ) = Gspin(T ,H ) + Glattice(T ) +
Gspin−lattice(T ,H ). It is the field-dependent spin-lattice con-
tribution Gspin−lattice(T ,H ) which creates the possibility of
overcoming the multiplicity limit �SJ

max = SJ (H = 0) −
SJ (H → ∞) = nR ln(2J + 1). The latter spin-multiplicity
limit �SJ

max originates from SJ (T ,H ) := −(∂Gspin/∂T )H
and has therefore no contribution from the lattice degrees
of freedom, because the regular term Glattice has no field
dependence. We show explicitly in a minimalist microscopic
model that a term of the form Gspin−lattice(T ,H ) contributing to
the isothermal entropy change requires nonlinear spin-lattice
coupling. Evidently, magnetocaloric materials can only take
advantage of lattice degrees of freedom if nonlinear coupling
is sizable.

We use our minimalistic Hamilton function to calculate the
Gibbs free energy and from that the isothermal entropy change,
showing the possibility of overcoming �SJ

max. Moreover, we
calculate the magnetization M(T,H) and show for the latter that
in fact the numerically integrated Maxwell relation can gener-
ate an isothermal entropy change �S > nR ln(2J + 1), which
of course is identical with the analytically derived �S using
the free-energy expression. This explicit proof given by our
specific model may retrospectively appear redundant because
one may argue that there is no need to reconsider established
thermodynamics. However, the existing tendency to reason on
the basis of models and microscopic considerations, together
with a general propensity to consider statistical physics
superior to phenomenological thermodynamics, is motivation
enough for the explicit confirmation of the integrated Maxwell
relation. The work outlined here serves as an explicit reminder
that the Maxwell relation, when the prerequisites for its
application are fulfilled, provides the complete isothermal
entropy change and not just a “magnetic contribution” in
case there is more. We hope that our considerations help to
clarify some of the recent confusions such as those about
Maxwell’s relation in the framework of discussions of the
lattice contributions to the isothermal entropy change.

II. MINIMALIST CLASSICAL MODEL HAMILTONIAN

We consider an ensemble of statistically independent
constituents of pairs of interacting, mobile classical Ising spins.
When neglecting the kinetic energy, the Hamiltonian of an
individual Ising spin pair reads

H = 1
2D(x2 − x1)2 + J (x1,x2)σ1σ2 − h(σ1 + σ2). (1)

Here, D is the curvature of the harmonic elastic energy,
J (x1,x2) is the exchange integral, σ1,2 = ±1 are the classical
Ising spin variables, and h is an applied magnetic field where
constants such as the Bohr magneton, the g factor, and the
vacuum permeability have been absorbed such that h is
measured in units of energy. Equation (1) is a minimalistic
version of the one-dimensional Ising model with mobile
spins similar to the one discussed in the Appendix of
Ref. 35. We allow for an additional Zeeman term and enable
nonlinear spin-lattice interaction via the general dependence of
the exchange integral on x1,2, quantifying the deviations from
the equilibrium positions of the atoms 1 and 2. We make the
assumption of an exponential dependence of the exchange
integral on the spatial separation of the two spins, which
reads36

J (x1,x2) = J0e
−(x2−x1)/a, (2)

where a determines the length scale on which the exchange
interaction decays. We restrict our consideration to the case
of small deviations from the equilibrium positions such that
(x2 − x1)/a becomes a small parameter. We use the latter to
expand Eq. (2) up to first order and second order, respectively.
Substituting this expansion into Eq. (1) leaves us with two
systematically progressing approximations Hα and Hβ of our
minimalistic model Hamiltonian

Hα = 1
2Dy2 + J0

[
1 − y

a

]
σ1σ2 − h(σ1 + σ2),

(3)

Hβ = 1
2Dy2 + J0

[
1 − y

a
+ y2

2a2

]
σ1σ2 − h(σ1 + σ2),

where y = x2 − x1 is proportional to the normal coordinate of
the vibrational motion.

Next we evaluate the canonical partition function and
from that the Gibbs free energy per spin pair for Hα and
Hβ , respectively. We integrate out the classical variable 0 �
y/a � ∞ and take into account the spin products {σ1σ2} =
{1, − 1, − 1,1} and spin sums {σ1 + σ2} = {2,0,0, − 2} of the
four spin configurations. As a result, we obtain for Hα in the
limit of small exchange energy in comparison with the elastic
and the thermal energy kBT

Gα(T ,h)

= (2h + J0) − J 2
0

2a2D
− kBT ln

(
1 + e

4h
kBT + 2e

2(h+J0)
kBT

)
− kBT ln

√
πkBT

2a2D
. (4)

This limit above justifies neglecting quantum considerations
including the kinetic energy term in the Hamiltonian.

We are interested in the isothermal entropy change �S =
S(T ,h = 0) − S(T ,h → ∞). Therefore, only the term G̃α =
−kBT ln(1 + e

4h
kBT + 2e

2(h+J0)
kBT ) of Eq. (4) which depends

on h and T needs to be considered. It is straightfor-
ward to show from the temperature derivative of G̃α and
intuitively that asymptotically for kBT � |J0| the maximum
isothermal entropy change becomes �Sα = Sα(T ,h = 0) −
Sα(T ,h → ∞) = kB ln 4. This is in accordance with �Smax =
2kB ln 2, obtained from the limiting expression given by the
logarithm of the spin multiplicity of a quantum mechanical
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spin 1/2 system, where two such spins are involved in our
model Hamiltonian. Evidently, the spin-lattice coupling in
linear approximation has no effect on the isothermal entropy
change induced by a magnetic field in the classical limit. In
fact, the term G̃α , which completely determines the isothermal
entropy change, does not depend on the parameter a which
controls the spin-lattice coupling. A model Hamiltonian of

the form Hα is therefore not able to create an entropy
contribution which originates from nonmagnetic degrees of
freedom.

The situation changes when considering Hβ . Again we
restrict ourselves to the limiting case where the elastic energy
is large in comparison to the exchange energy and temperatures
are sufficiently high. Then the Gibbs free energy Gβ reads

Gβ(T ,h) = (2h + J0) − kBT ln

{
exp

(
−J0 (4h + 3J0) − 4a2D(h + J0)

2(a2D − J0)kBT

) √
2πkBT

a2D − J0
+

√
πkBT

2(a2D + J0)

×
[

exp

(
4h

kBT
+ J 2

0

2kBT (a2D + J0)

)
+ exp

(
J 2

0

2kBT (a2D + J0)

)]}
. (5)

It is straightforward to show that in the limit of large a,
Eq. (5) reduces to Eq. (4) up to an irrelevant field- and
temperature-independent constant. In contrast to Eq. (4), we
see that the nonlinear Hamiltonian Hβ generates terms in
the free energy, which depend on the magnetic field, tem-
perature, and exchange as well as the elastic constant D.
Next we show that this is the ingredient allowing for �S >

kB ln(2J + 1) via a magnetic-field activation of nonmagnetic
degrees of freedom through nonlinear spin-lattice coupling.

From S = −(∂Gβ/∂T )h we calculate �Sβ(T ,h) =
Sβ(T ,h = 0) − Sβ(T ,h) in the limit kBT � |J0|, which
simplifies in the limit �Sβ(T ,h → ∞) = Sβ(T ,h = 0) −
Sβ(T ,h → ∞) into the intuitive approximate expression

�Sβ(T ,h → ∞) = kBJ0

2a2D
+ kB ln 4, (6)

showing that the conventional limit determined by the loga-
rithm of the spin multiplicity is exceeded by the term kBJ0

2a2D
,

which allows for an intuitive interpretation.
Clearly, in the absence of spin-spin exchange such as para-

magnetic materials, entropy originating from elastic degrees
of freedom cannot be harnessed. Likewise, a sensitive depen-
dence of the exchange on the spatial spin separation expressed
in accordance with Eq. (2) through a small characteristic
exponential decay length a increases spin-lattice coupling and
enhances the impact of the lattice degree of freedom on the
entropy change. Finally, if the elastic energy a2D is large in
comparison with kBT , there is no significant thermal excitation
of the elastic degree of freedom and hence no significant
contribution from the latter to the isothermal entropy change.

III. COMPARISON BETWEEN INTEGRATED MAXWELL
RELATION AND ENTROPY OF THE MODEL

HAMILTONIAN

Next we calculate the magnetization M =
−[∂Gβ(T ,h)/∂h]T and use the resulting M vs h isotherms for
numerical integration of the Maxwell relation ( ∂M

∂T
)h = ( ∂S

∂h
)T .

The latter provides the isothermal entropy change �S as a
function of h. The result from the Maxwell relation is then
compared with the analytically calculated isothermal entropy

change determined directly from S = −(∂Gβ/∂T )h. This
comparison provides explicit confirmation that the Maxwell
relation includes the lattice degrees of freedom.

Specifically, we calculate the magnetic moment per spin
pair for the set of parameter Jo/kB = 0.1 K and a2D/kB =
0.49 K. These values fulfill the constraint a2D � Jo under
which we performed the classical calculation of the Gibbs free
energy based on the Hamiltonian Hβ . In addition, we limit our
investigation to a temperature region such that kBT is large in
comparison with elastic and exchange energies such that our
classical consideration becomes meaningful.

Figure 1 shows a representative set of isotherms M vs
h for 4 K � T � 100 K in temperature steps of �T = 2 K.
The complete data set used for the entropy calculation via
Maxwell’s relation involves the isotherms for 3 K � T �
100 K in steps of �T = 0.01 K.

Figure 2 shows the entropy calculated via the integrated
Maxwell relation (magenta open circles) using the magneti-
zation data selectively displayed in Fig. 1. The black solid

0 5 10 15 20 25 30
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h/k
B
(K)

T=100K

FIG. 1. Representative isotherms M vs h for 0 � h/kB � 30 K
calculated with Jo/kB = 0.1 K and a2D/kB = 0.49 K for 4 K �
T � 100 K displayed in steps �T = 2 K.
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FIG. 2. (Color online) Entropy �Sβ (T ,h) (black solid lines)
vs T calculated from Gibbs free-energy derivatives for Jo = 0.1 K
and a2D/kB = 0.49 K displayed at constant magnetic fields 2 K �
h/kB � 100 K in field steps �h/kB = 2 K. Open circles (magenta)
show entropy calculated via the Maxwell relation using magnetization
data such as the isotherms shown in Fig. 1. The lower dotted blue
line represents the maximum entropy limit based of spin-multiplicity
only. The upper dotted red line shows the maximum isothermal
entropy change which includes the magnetoelastic contribution using
the microscopic parameters Jo = 0.1 K, and a2D/kB = 0.49 K. The
inset shows the result of the temperature dependent area determined
from numerical integration of the −�S vs T curve for h/kB = 30 K.
The dashed horizontal line marks its theoretical limiting value of
60 K.

lines in Fig. 2 show the isothermal entropy change �Sβ(T ,h)
calculated analytically from S = −(∂Gβ/∂T )h. For clarity,
�Sβ(T ,h) curve are displayed in field steps of �h/kB = 2 K.
The perfect coincidence of circles with the lines implies
that the Maxwell relation contains the entropy contributions
of both the spin degrees of freedom as well as the lattice
degrees of freedom. There is, within numerical uncertain-
ties, no difference between the result from the integrated
Maxwell relation and �Sβ(T ,h) calculated analytically from
S = −(∂Gβ/∂T )h.

The lower dotted blue line in Fig. 2 represents the value of
�SJ

max, which for J = 1/2 reads �SJ
max/kB = 2 ln 2 = 1.38.

The upper dotted red line shows the maximum isothermal
entropy change achievable in our model with magnetoelastic
coupling using the microscopic parameters above. This limit is

clearly above the magnetic limit �SJ
max/kB = 2 ln 2 indicating

explicitly that lattice degrees of freedom can contribute to the
isothermal field-induced entropy change as they do in real
systems in the case of the giant MCE. The validity of our
simple approximate Eq. (6) is also prominently evident in this
figure. A calculation of the limiting approximate expression
�Sβ(T ,h → ∞) = kBJ0

2a2D
+ kB ln 4 yields �Sβ(T ,h → ∞) =

1.488kB, which is in excellent agreement with our numerically
calculated value of �Sβ(T ,h → ∞) = 1.494kB.

The inset of Fig. 2 shows a semilogarithmic plot of
Area(T ) = − 1

kB

∫ T

0 �S(T ′)dT ′ evaluated through numeri-
cal integrations of the −�S/kB vs. T data for h/kB =
30 K. An area sum rule is known to hold such that
lim T → ∞ Area(T ) = μ0V Ms�H/kB, where V Ms is the
saturation magnetic moment and �H is the magnetic field
change which induces the isothermal entropy change.25 In
accordance with the area sum rule, our numerically calculated
function Area(T) shows an asymptotic approach of the limiting
value μ0V Ms�H , which is given by the saturation value
(σ1 + σ2)h/kB = 60 K in the reduced variables of our model
with h/kB = 30 K and σ 1,2 = 1. The fact that the sum
rule applies is further evidence that the Maxwell relation
includes all contributions to the entropy change, including
those originating from elastic degrees of freedom.

IV. SUMMARY

We have clarified the misleading interpretation of what is
sometimes called in the literature magnetic entropy change.
The magnetic field-induced isothermal entropy change can in
fact contain lattice contributions other than just spin degrees of
freedom. In addition, we reemphasized that those contributions
are fully contained in the Maxwell relation if the latter is
applicable. We used a minimalistic model of Ising spin pairs
and made it as complex as necessary to show that the activation
of lattice degrees of freedom requires nonlinear magnetoelastic
coupling. Moreover, we showed explicitly that lattice degrees
of freedom can help to overcome the spin-multiplicity limit of
entropy as it does in the giant magnetocaloric effect. Here,
however, we show the impact of elastic coupling on the
magnetocaloric effect already in the absence of magnetic long
range order.
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